Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Chromatogr ; : e5950, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973522

RESUMO

Litchi chinensis Sonn (Litchi) has been listed in the Chinese Pharmacopeia, and is an economically and medicinally valuable species within the family Sapindaceae. However, the material basis of its pharmacological action and the pharmacodynamic substances associated with its hypoglycemic effect are still unclear. The predominant objective of this study was to establish the fingerprint profile of litchi leaves and to evaluate the relationship between the components of the high-performance liquid chromatography (HPLC) fingerprint of litchi leaves, assess its hypoglycemic effect by measuring α-glucosidase and α-amylase inhibition, and find the spectrum-effect relationship of litchi leaves by bivariate correlation analysis, Grey relational analysis and partial least squares regression analysis. In this study, the fingerprint of litchi leaves was established by HPLC, and a total of 15 common peaks were identified that clearly calibrated eight components, with P1 being gallic acid, P2 being protocatechuic acid, P3 being catechin, P6 being epicatechin, P12 being rutin, P13 being astragalin, P14 being quercetin and P15 being kaempferol. The similarities between the fingerprints of 11 batches of litchi leaves were 0.766-0.979. Simultaneously, the results of the spectrum-effect relationship showed that the chemical constituents represented by peaks P8, P3, P12, P14, P2, P13, and P11 were relevant to the hypoglycemic effect.

2.
Adv Healthc Mater ; 13(14): e2303671, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38416744

RESUMO

Intracellular bacteria are the major cause of serious infections including sepsis and peritonitis, but face great challenges in fighting against the stubborn intracellular small colony variants (SCVs). Herein, the authors have developed nanogels (NGs) to destroy both planktonic bacteria and SCVs and eliminate excessive inflammations for peritonitis and sepsis therapies. Free gentamicin (GEN) and hydroxyapatite nanoparticles (NPs) with GEN loading and mannose grafts (mHAG) are inoculated into ε-polylysine NGs to obtain NG@G1-mHAG2 through crosslinking with phenylboronic acid and tannic acid. The H2O2 consumption after reaction with phenylboronic esters and the elimination of free radicals by tannic acid alleviates the escalated inflammatory status to promote sepsis therapy. After mannose-mediated uptake into macrophages, the acid-triggered degradation of mHAG NPs generates Ca2+ to destabilize lysosomes and the efficient lysosomal escape leads to reversion of hypometabolic SCVs into normal phenotype and their sensitivity to GEN. In a peritonitis mouse model, NG@G1-mHAG2 treatment provides strong and persistent bactericidal effects against both extracellular bacteria and intracellular SCVs and extends survival of peritonitis mice without apparent hepatomegaly, splenomegaly, pulmonary edema, and inflammatory cell infiltration. Thus, this study demonstrates a concise and versatile strategy to eliminate SCVs and relieve inflammatory storms for peritonitis and sepsis therapies without infection recurrence.


Assuntos
Gentamicinas , Lisossomos , Nanogéis , Peritonite , Sepse , Animais , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Gentamicinas/farmacologia , Gentamicinas/química , Camundongos , Sepse/tratamento farmacológico , Sepse/metabolismo , Lisossomos/metabolismo , Nanogéis/química , Antibacterianos/química , Antibacterianos/farmacologia , Células RAW 264.7 , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina
3.
Toxicol Lett ; 393: 69-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281554

RESUMO

Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.


Assuntos
Sinalização do Cálcio , Microglia , Humanos , Cálcio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Doenças Neuroinflamatórias , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Movimento Celular
4.
Foods ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444231

RESUMO

Lotus roots are widely consumed vegetables because of their great taste and abundant nutrients, but their quality varies with the environments and cultivar. This study systematically compared farinose (Elian No. 5) and crisp (Elian No. 6) lotus root cultivars from three geographical origins. Pasting and texture characteristics verified that Elian No. 5 possessed lower hardness and lower ability to withstand shear stress and heating during cooking compared with Elian No. 6. Untargeted metabolite profiling was first performed using ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) combined with a Zeno trap. In total, 188 metabolites were identified based on the matching chemistry database. Multivariate analysis demonstrated that lotus roots from different cultivars and origins could be adequately distinguished. Sixty-one differential metabolites were identified among three Elian No. 5 samples, and 28 were identified among three Elian No. 6 samples. Isoscopoletin, scopoletin, and paprazine were the most differential metabolites between Elian No. 5 and Elian No. 6. These results can inform future research on the discrimination and utilization of lotus roots.

5.
Adv Healthc Mater ; 11(19): e2201323, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841607

RESUMO

Diabetic foot ulcer (DFU) treatment is challenged by persistent bacterial infection and hyperglycemia-caused vascular dysplasia. Herein, self-propelled nanomotors are designed to achieve biofilm microenvironment (BME)-activated multistage release of NO for effective sterilization and subsequent angiogenesis promotion. CaO2 nanoparticles (NPs) are capped with PDA layers, followed by complexation with Fe2+ and surface grafting of cysteine-NO to obtain Janus Ca@PDAFe -CNO NPs. In response to low pH in BME, the decomposition of CaO2 cores generates O2 from one side of Janus NPs to propel biofilm penetration, and the released H2 O2 and Fe2+ produce •OH through Fenton reaction. The concurrent glutathione-triggered release of NO can be converted into reactive nitrogen species, which exhibit significantly higher bactericidal efficacy than those with only generation of •OH or NO. The slow release of NO for an extended time period promotes endothelial cell proliferation and migration. On Staphylococcus aureus-infected skin wounds of diabetic mice, NP treatment eliminates bacterial infections and significantly elevates blood vessel densities, leading to full wound recovery and regeneration of arranged collagen fibers and skin accessories. Thus, the self-propelling and multistage release of NO provide a feasible strategy to combat biofilm infection without using any antibiotics and accelerate angiogenesis and wound healing for DFU treatment.


Assuntos
Infecções Bacterianas , Diabetes Mellitus Experimental , Pé Diabético , Infecção dos Ferimentos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Biofilmes , Colágeno , Cisteína , Pé Diabético/microbiologia , Glutationa , Camundongos , Espécies Reativas de Nitrogênio , Cicatrização , Infecção dos Ferimentos/microbiologia
6.
J Mater Chem B ; 10(22): 4189-4202, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575383

RESUMO

Biofilm infection is regarded as a major contributing factor to the failure of burn treatment and a persistent inflammatory state delays healing and leads to the formation of chronic wounds. Herein, self-propelled nanomotors (NMs) are proposed to enhance biofilm infiltration, bacterial destruction, and endotoxin clearance to accelerate the healing of infected burn wounds. Janus nanoparticles (NPs) were prepared through partially coating Fe3O4 NPs with polydopamine (PDA) layers, and then polymyxin B (PMB) and thiolated nitric oxide (SNO) donors were separately grafted onto the Janus NPs to obtain IO@PMB-SNO NMs. In response to elevated glutathione (GSH) levels in biofilms, NO generation from one side of the Janus NPs leads to self-propelled motion and deep infiltration into biofilms. The local release of NO could destroy bacteria inside the biofilm, which provides a non-antibiotic antibiofilm approach without the development of drug resistance. In addition to intrinsic antibacterial effects, the PMB grafts preferentially bind with bacteria and the active motion enhances lipopolysaccharide (LPS) clearance and then significantly attenuates the production of inflammatory cytokines and reactive oxide species by macrophages. Partial-thickness burn wounds were established on mice and infected with P. aeruginosa, and NM treatment almost fully destroyed the bacteria in the wounds. IO@PMB-SNO NMs absorb LPS and remove it from the wounds under a magnetic field, which downregulates the interleukin-6 and tumor necrosis factor-α levels in tissues. The infected wounds were completely healed with the deposition and arrangement of collagen fibers and the generation of skin features similar to those of normal skin. Thus, IO@PMB-SNO NMs achieved multiple-mode effects, including GSH-triggered NO release and self-propelled motion, the NO-induced non-antibiotic elimination of biofilms and bacteria, and PMB-induced endotoxin removal. This study offers a feasible strategy, with integrated antibiofilm and anti-inflammatory effects, for accelerating the healing of infected burn wounds.


Assuntos
Queimaduras , Infecção dos Ferimentos , Animais , Bactérias , Biofilmes , Queimaduras/tratamento farmacológico , Endotoxinas/farmacologia , Lipopolissacarídeos , Camundongos , Óxido Nítrico/farmacologia , Pseudomonas aeruginosa , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
7.
Ecotoxicol Environ Saf ; 172: 423-431, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30735974

RESUMO

The photocatalytic performance of layered double hydroxides (LDH) is usually confined to the slow interface mobility and high recombination rate of photogenerated electron-hole pairs in material. To overcome the low photocatalytic efficiency, novel Ag2O/Ag decorated LDH (LDH-Ag2O/Ag) was successfully synthesized by depositing Ag2O on the surface of LDH and then converted to Ag° nanoparticles in the right position after heat treatment. The as-synthesized LDH-Ag2O/Ag composites were characterized by Powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectra (UV-vis DRS), photoluminescence spectra (PL) and transient photocurrent (TPC) analysis. Compared with virgin LDH, the photocatalytic activities of LDH-Ag2O/Ag composites were enhanced significantly. The optimum photocatalytic efficiency of LDH-Ag10 (0.0184 min-1) was nearly 46 times higher than that of virgin LDH (0.0004 min-1). The result of active species trapping experiments indicated that •OH, h+, and •O2- have an effect on the TC degradation, where •OH played the predominant role during the photocatalytic process. The possible photocatalytic mechanisms involving the charge transfer pathway and reactive species generation during the process of TC degradation were also discussed. The improved photocatalytic activity of LDH-Ag2O/Ag could be attributed to the synergetic effect between LDH and Ag2O/Ag that extended visible light range and reduced photogenerated charge carriers recombination.


Assuntos
Luz , Óxidos/química , Compostos de Prata/química , Tetraciclina/química , Antibacterianos/química , Catálise , Hidróxidos/química , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Difração de Raios X
8.
Toxicol Appl Pharmacol ; 363: 64-71, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30476502

RESUMO

Lead (Pb) is one of the most widely studied occupational and environmental toxins. Chronic exposure to Pb affects neural function in the central nervous system (CNS). Glial cells in the CNS, such as microglia and astrocytes, respond differently to Pb-induced toxicity. However, the underlying mechanism has not yet been identified. We measured the cell viability and intracellular Pb uptake in rat primary microglia and astrocytes using the CCK-8 assay and inductively coupled plasma mass spectrometry, and found that Pb decreased microglial viability at lower dosages than in astrocytes, while Pb uptake was greater in astrocytes. Pb-induced oxidative stress in microglia results in increased production of reactive oxygen species, down-regulation of glutathione, and enhanced Nrf2 protein expression, while there was no obvious change in astrocytes. The role of Nrf2 in Pb-induced oxidative stress has also been confirmed in primary microglia with the use of Nrf2 small interfering RNA and an Nrf2 agonist. These data indicate that primary microglia were more sensitive to Pb exposure than astrocytes, which is associated with an obvious oxidative stress response and up-regulation of Nrf2 might be involved in this process.


Assuntos
Astrócitos/efeitos dos fármacos , Chumbo/toxicidade , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Hidroquinonas/farmacologia , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Regulação para Cima/efeitos dos fármacos
9.
Oncotarget ; 8(48): 83831-83844, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137386

RESUMO

BACKGROUND: A shift from oxygen phosphorylation to aerobic glycolysis was known as the Warburg effect and a characteristic of cancer cell metabolism facilitating metastasis. Mitochondrial calcium uniporter (MCU), a key ion channel that mediates Ca2+ uptake into mitochondria, was found to promote cancer progression and metastasis. However, its explicit role in shifting metabolism of breast cancer cells has not been defined. METHODS: We evaluated MCU overexpression or knock-down on migration, invasion and glucose metabolismin breast cancer cells. Mitochondrial Ca2+ dynamics were monitored with Rhod-2 fluorescence imaging. Luciferase reporter assay was used to confirm the interaction between miR-340 and 3'-untranslated region (3'-UTR) of MCU gene. Mouse models of lung metastasis were used to determine whether gain-/loss-of-MCU impacts metastasis. MCU expression was assessed in 60 tumor samples from breast cancer patients by immunohistochemistry (IHC). RESULTS: Knockdown of MCU in MDA-MB-231 cells significantly reduced cell migration and invasion in vitro and lung metastasis in vivo; whereas overexpression of MCU in MCF-7 cells significantly increased migration and invasion in vitro and lung metastasis in vivo. Overexpression of MCU promoted lung metastasis by enhancing glycolysis, whereas suppression of MCU abolished this effect. Moreover, a novel mechanism was identified that MCU was a direct target of microRNA-340, which suppressed breast cancer cell motility by inhibiting glycolysis. Consistently, significantly increased MCU protein was found in metastatic breast cancer patients. CONCLUSIONS: We identified a novel mechanism that upregulated MCU promotes breast cancer metastasis via enhancing glycolysis, and that this process is posttranscriptionally and negatively regulated by microRNA-340.

10.
Rev Sci Instrum ; 87(7): 075003, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475588

RESUMO

In this paper, the design of a novel micro digital sun sensor is described. It relies on V-shaped slit and linear array CCD to measure sun-ray angle against two axes. A highly integrated microprogram control unit) is used to make a very simple and compact system. V-shaped slit can simplify algorithm and achieve a wider field of view. Error compensation and accurate calibration are employed to improve accuracy. Adaptive threshold and adjustable expose time further improve reliability. Experiments and flight validation show that the FOV (Field of View) of the sun sensor is ±65° × ± 65° and the accuracy is 0.1° in the whole FOV. It can work reliably at an update rate of 25 Hz, while the consumption is only 200 mW. This sun sensor is proved to have a good prospect in micro/nanosatellites.

11.
Huan Jing Ke Xue ; 32(11): 3145-52, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22295605

RESUMO

Using Theil index and spatial autocorrelation analysis methods, the characteristics, regional disparity and spatial pattern evolution of carbon emission intensity from energy consumption were analyzed on national, regional and provincial level from 1999 to 2007 in China. The results indicate that: (1) total energy carbon emission in China has increased from 0.91Gt in 1999 to 1.83Gt in 2007, while carbon emission intensity has decreased from 0.83 t x (10(4) yuan) (-1) to 0.79 t x (10(4) yuan) (-1); (2) carbon emission intensity of eight major economic blocks showed the trend of three-level differentiation, with that of northeast regions, the middle reaches of Yellow River regions and northwest regions above 1.0 t x (10(4) yuan)(-1); northern coastal regions, the middle reaches of Yangtze River regions and southwest regions 0.7-1.0 t x (10(4) yuan) (-1); eastern and northern regions 0.32-0.51 t x (10(4) yuan) (-1); (3) Theil index analysis indicates that the within-region carbon emission intensities were similar, and the expanding total disparity of carbon emission intensity was primarily due to between-region inequalities. (4) spatial autocorrelation analysis shows that Global Moran's I has increased from 0.19 to 0.25, indicating that there were positive spatial correlations among provincial regions in China, and regions of similar carbon emission intensity agglomerated in space. The "cold spot" areas of carbon emission intensity were relatively stable, while the "hot spot" areas has gradually shifted from northwest regions to the middle reaches of Yellow River regions and northeast regions. (5) spatial disparity of carbon emission intensity is closely related to factors such as regional resources endowment, economic development, industrial structure and energy utilization efficiency. The study of regional disparity and spatial autocorrelation provides insight into spatial heterogeneity and spatial pattern evolution of carbon emission intensity in China, and also provides references for the development of differential regional objectives of carbon emission reduction and related regulation policies.


Assuntos
Poluição do Ar/análise , Dióxido de Carbono/análise , Carbono/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis/efeitos adversos , Poluição do Ar/prevenção & controle , China , Compostos Orgânicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...