Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164201

RESUMO

SYAUP-CN-26 (1S, 2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide) is a novel sulfonamide compound with excellent activity against Botrytis cinerea. The present study sought to explore the mutant of B.cinerea resistant to SYAUP-CN-26 using SYAUP-CN-26 plates. Moreover, the cell membrane functions of B.cinerea, histidine kinase activity, relative conductivity, triglyceride, and cell membrane structure were determined, and the target gene histidine kinase Bos1 (AF396827.2) of procymidone was amplified and sequenced. The results showed that compared to the sensitive strain, the cell membrane permeability, triglyceride, and histidine kinase activity of the resistant strain showed significant changes. The relative conductivity of the sensitive strain increased by 6.95% and 9.61%, while the relative conductivity of the resistant strain increased by 0.23% and 1.76% with 26.785 µg/mL (EC95) and 79.754 µg/mL (MIC) of SYAUP-CN-26 treatment. The triglyceride inhibition rate of the resistant strain was 23.49% and 37.80%, which was 0.23% and 1.76% higher than the sensitive strain. Compared to the sensitive strain, the histidine kinase activity of the resistant strain was increased by 23.07% and 35.61%, respectively. SYAUP-CN-26 significantly damaged the cell membrane structure of the sensitive strain. The sequencing of the Bos1 gene of the sensitive and resistant strains indicated that SYAUP-CN-26 resistance was associated with a single point mutation (P348L) in the Bos1 gene. Therefore, it was inferred that the mutant of B.cinerea resistant to SYAUP-CN-26 might be regulated by the Bos1 gene. This study will provide a theoretical basis for further research and development of sulfonamide compounds for B. cinerea and new agents for the prevention and control of resistant B. cinerea.


Assuntos
Botrytis/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Sulfonamidas/farmacologia , Fungicidas Industriais/farmacologia
2.
Biochimie ; 176: 162-168, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32726595

RESUMO

This study investigated the effect of SYAUP-CN-26 on mitochondrial structure and function of Botrytis cinerea. The mitochondria, with the addition of SYAUP-CN-26 (EC50 [1.823 mg/L], EC90 [19.263 mg/L], and minimum inhibitory concentration [MIC] [79.754 mg/L]), emerged malformed shape, rough surface and unordered structure. As the concentration of SYAUP-CN-26 increases, the decrease in ATP content and the enhancement in the inhibition of mitochondrial respiratory chain complexes function confirmed that mitochondrial function was disrupted. And the respiratory superposing inhibition showed that SYAUP-CN-26 inhibited the tricarboxylic acid cycle (TCA) pathway of B. cinerea cells. Overall, these results indicated that SYAUP-CN-26 could inhibit mitochondrial structure and function to effect the growth of B. cinerea cells, and inhibition of mitochondrial respiratory chain complexes was a key factor for disruption of B. cinerea mitochondrial function and antifungal activity.


Assuntos
Antifúngicos/química , Antifúngicos/metabolismo , Botrytis/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Mitocôndrias/metabolismo , Transporte de Elétrons/efeitos dos fármacos
3.
Molecules ; 25(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881794

RESUMO

In recent years, Botrytis cinerea has led to serious yield losses because of its resistance to fungicides. Many sulfonamides with improved properties have been used. (1S,2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl)cyclohexane-1-sulfonamide) (abbreviation: SYAUP-CN-26) is a new sulfonamide compound that has excellent activity against B. cinerea. This study investigated the effect of SYAUP-CN-26 on electric conductivity, nucleic acids leakage, malondialdehyde (MDA) content, and reducing sugars and membrane structure reduction of B. cinerea. The results showed that the cell membrane permeability of B. cinerea increased with increasing concentrations of SYAUP-CN-26; meanwhile, the sugar content decreased, the malondialdehyde content increased, and relative electric conductivity and nucleic acid substance leakage were observed in the cell after exposure to 19.263 mg/L SYAUP-CN-26 for 24 h. After 48 h of exposure to 1.823 mg/L and 19.263 mg/L SYAUP-CN-26, the cell membranes of B. cinerea mycelia were observed to be damaged under propidium iodide (PI) and transmission electron microscopy (TEM) observations. It is assumed that SYAUP-CN-26 was responsible for the damage of cell membrane. Overall, the results indicate that SYAUP-CN-26 could inhibit the growth of B. cinerea cells by damaging the cell membranes.


Assuntos
Botrytis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cicloexanos/farmacologia , Botrytis/ultraestrutura , Cicloexanos/química , Condutividade Elétrica , Malondialdeído/metabolismo , Ácidos Nucleicos/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...