Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37517282

RESUMO

Anurans have been excellent organisms for studying amphibian metamorphosis. Tail resorption is a remarkable event that occurs during amphibian metamorphosis. Although tail resorption has been previously studied in other anurans like Xenopus laevis and Rana chensinensis, there is no report on Bufo gargarizans. This paper thus explored the mechanism of tail resorption during metamorphosis in Bufo gargarizans tadpoles through some biological research methods. Histological results showed that the tail tissues of tadpoles gradually degraded as metamorphosis progressed. RNA sequencing analysis was performed to examine the expression level and functional enrichment of differentially expressed genes in the tail. In addition, we analyzed the mRNA expression levels of genes related to tail resorption by quantitative real-time polymerase chain reaction. We also speculated on three pathways that participate in the regulation of tail resorption based on the above results. The present study might provide a theoretical basis and novel insights for further research of complex molecular mechanisms of tail resorption in amphibians.


Assuntos
Bufonidae , Cauda , Animais , Bufonidae/genética , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , Xenopus laevis
2.
Aquat Toxicol ; 249: 106228, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35751941

RESUMO

Nitrite is a ubiquitous toxic compound in aquatic ecosystems and has negative effects on aquatic organisms. The intestine and the trillions of microbes that inhabit it, play an integral role in maintaining digestive and immune functions. However, the effects of nitrite on intestinal health and microflora have been poorly investigated. Therefore, the present study evaluated the response of intestinal histology, immunity, digestive enzyme activities and microbiota to nitrite exposure in Bufo gargarizans tadpoles. The results showed that nitrite caused damage to the intestine and impaired digestive performance. Significant changes in the transcriptional profiles of genes involved in oxidative stress (sod, gpx and hsp), inflammation, and immunity (socs3, il-27, il-1ß and il-17d) were observed in the NO2-N treatment groups. In addition, exposure to nitrite induced alterations of intestinal microbial diversity, structure and composition, suggesting that nitrite may lead to intestinal microbiota dysbiosis. It is noteworthy that probiotics (e.g., Bacteroidetes and Fusobacteria) were decreased after exposure to nitrite, whereas potentially opportunistic pathogens such as Proteobacteria and Enterobacteriaceae were elevated. Functional prediction and correlation analysis suggested that the above changes may interfere with metabolic function and trigger various diseases. Taken together, we concluded that nitrite exposure induced intestinal microbial dysbiosis, which may lead to immune dysfunction and metabolic disorder, and ultimately to histological damages in B. gargarizans. Further, this study will provide a scientific basis for further understanding the risk of nitrite pollution on the intestinal health of amphibians.


Assuntos
Microbioma Gastrointestinal , Microbiota , Poluentes Químicos da Água , Animais , Bufonidae , Disbiose/induzido quimicamente , Disbiose/patologia , Humanos , Imunidade , Intestinos/microbiologia , Larva , Nitritos/metabolismo , Nitritos/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Ecotoxicology ; 30(3): 502-513, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33587250

RESUMO

Copper (Cu) is one of the environmental contaminations which can pose significant risks for organisms. The current study explores the effects of Cu exposure on the growth, intestinal histology and microbial ecology in Bufo gargarizans. The results revealed that 0.5-1 µM Cu exposure induced growth retardation (including reduction of total body length and wet weight) and intestinal histological injury (including disordered enterocyte, changes in the villi and vacuoles) of tadpoles. Also, high-throughput sequencing analysis showed that Cu exposure caused changes in richness, diversity and structure of intestinal microbiota. Moreover, the composition of intestinal microbiota was altered in tadpoles exposed to different concentrations of Cu. At the phylum level, we observed the abundance of proteobacteria was increased, while the abundance of fusobacteria was decreased in the intestinal microbiota of tadpoles exposed to 1 µM Cu. At the genus level, a reduced abundance of kluyvera and aeromonas was observed in the intestinal microbiota of tadpoles under the exposure of 0-0.5 µM Cu. Finally, functional predictions revealed that tadpoles exposed to copper may be at a higher risk of developing metabolic disorders or diseases. Above all, our results will develop a comprehensive view of the Cu exposure in amphibians and will yield a new consideration for sublethal effects of Cu on aquatic organisms.


Assuntos
Cobre , Microbioma Gastrointestinal , Animais , Bufonidae , Cobre/toxicidade , Intestinos , Larva
4.
Bull Environ Contam Toxicol ; 105(1): 41-50, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32474622

RESUMO

Molecular biomarkers play an increasing crucial role in evaluating and predicting toxicity of metals. Expressions patterns of genes related to oxidative stress, apoptosis, immune and inflammation response in the Bufo gargarizans embryo exhibited a development dependent manner. The genes related to oxidative stress (HSP, GPx and SOD) are the first response in the development of embryo, followed by the apoptosis (Bax, BCLAF1 and TRAIL) and inflammation and immune response (SOCS3, IL-27 and IL-17D), respectively. Then, we have verified the HSP, Bax and SOCS3 IL-27 (expressed highest in their respective processes) exhibited the most significant changes in Cd-Pb mixed group compared with control. In addition, we found exposure of Cd-Pb mixed metals causes greater adverse effects than Cd, Pb alone on development and morphology of embryo. Overall, our results provide a useful tool to use the sensitive molecular biomarkers as indicators of developmental toxicity in amphibian embryo.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Testes de Toxicidade , Animais , Biomarcadores/metabolismo , Bufonidae/embriologia , Bufonidae/metabolismo , Estresse Oxidativo
5.
Org Lett ; 20(23): 7400-7404, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30457873

RESUMO

Two classes of azido-modified pyrimidine nucleosides were synthesized as potential radiosensitizers; one class is 5-azidomethyl-2'-deoxyuridine (AmdU) and cytidine (AmdC), while the second class is 5-(1-azidovinyl)-2'-deoxyuridine (AvdU) and cytidine (AvdC). The addition of radiation-produced electrons to C5-azido nucleosides leads to the formation of π-aminyl radicals followed by facile conversion to σ-iminyl radicals either via a bimolecular reaction involving intermediate α-azidoalkyl radicals in AmdU/AmdC or by tautomerization in AvdU/AvdC. AmdU demonstrates effective radiosensitization in EMT6 tumor cells.


Assuntos
Elétrons , Nucleosídeos de Pirimidina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Radicais Livres/química , Radicais Livres/farmacologia , Humanos , Estrutura Molecular , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/química
6.
Mol Divers ; 21(2): 317-323, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247170

RESUMO

3-phenol-1H-pyrazoles (2), 4-halogeno-3-phenol-1H-pyrazoles (3) and 2-(1-phenol-1H-pyrazol-5-yl)phenols (4) were prepared by the condensation of (E)-3-(dimethylamino)-1-phenylprop-2-en-1-ones and hydrazine hydrate or phenylhydrazine in good yields. They were evaluated against five phytopathogens fungi, namely Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani and Fusarium solani in vitro. Most of the above-mentioned compounds exhibited activities. For example, 4-chloro-2-(1H-pyrazol-3-yl)phenol (3k) and 4-bromo-3-phenol-1H-pyrazole (3b) showed good and broad-spectrum antifungal properties against Cytospora sp., C. gloeosporioides, Botrytis cinerea, Alternaria solani and F. Solani with [Formula: see text] values ranging from 4.66 to 12.47 [Formula: see text]g/mL. The results showed that pyrazoles with one aryl group at 3-position (2 and 3) exhibited better antibacterial activity than those with two aryl substituents (4). In addition, the existence of an electron-withdrawing group, a substituent on the ortho-position of phenol ring or a halogen atom at the 4-position of the pyrazole enhanced the antifungal activity of pyrazoles 2 and 3. A series of arylpyrazole derivatives was facilely prepared and was evaluated against five phytopathogens fungi including Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani, and Fusarium solani in vitro. Most of those compounds exhibited remarkable antifungal activities and were superior to the positive control hymexazol.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Fungos/química , Plantas/microbiologia , Pirazóis/síntese química , Pirazóis/farmacologia , Antifúngicos/química , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Pirazóis/química
7.
Arch Pharm (Weinheim) ; 350(3-4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28304114

RESUMO

Transition metal-catalyzed halosulfonylation of 5-ethynyl uracil nucleosides provided (E)-5-(1-chloro-2-tosylvinyl)uridines. Tetrabutylammonium fluoride-mediated direct CH arylation of 5-iodouracil nucleosides with furan or 2-heptylfuran gave 5-furyl-substituted nucleosides without the necessity of using the organometallic substrates. These two classes of 5-substituted uracil nucleosides as well their corresponding ester derivatives were tested against a broad range of DNA and RNA viruses and the human immunodeficiency virus (HIV). The 3',5'-di-O-acetyl-5-(E)-(1-chloro-2-tosylvinyl)-2'-deoxyuridine (24) inhibited the growth of L1210, CEM and HeLa cancer cells in the lower micromolar range. The (ß-chloro)vinyl sulfone 24 and 5-(5-heptylfur-2-yl)-2'-deoxyuridine (10) displayed micromolar activity against varicella zoster virus (VZV). The 5-(5-heptylfur-2-yl) analog 10 and its 3',5'-di-O-acetyl-protected derivative showed similar activity against the cytomegalovirus (CMV). The 5-(fur-2-yl) derivatives of 2'-deoxyuridine and arabino-uridine inhibited the replication of herpes simplex virus (HSV) TK+ strains while the 5-(5-heptylfur-2-yl) derivative 10 displayed antiviral activity against the parainfluenza virus.


Assuntos
Antivirais/farmacologia , Citostáticos/farmacologia , Nucleosídeos/farmacologia , Uracila/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citostáticos/síntese química , Citostáticos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade , Uracila/análogos & derivados , Uracila/química
8.
Mol Divers ; 20(4): 887-896, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27599494

RESUMO

5,6-Diarylpyrazolo[1,5-a]pyrimidines (3) and 6,7-diarylpyrazolo[1,5-a]pyrimidines (4) were chemoselectively synthesized by the condensation of isoflavone (1) and 3-aminopyrazole (2). 5,6-Diarylpyrazolo[1,5-a]pyrimidines (3) were obtained via microwave irradiation, and 6,7-diarylpyrazolo[1,5-a]pyrimidines (4) were obtained via conventional heating. In addition, the pyrimidine derivatives 3 and 4 were evaluated against five phytopathogenic fungi (Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani, and Fusarium solani) using the mycelium growth rate method. Some of them were effective in inhibiting the growth of the five phytopathogenic fungi. For instance, 6,7-diarylpyrazolo[1,5-a]pyrimidines (4j) inhibited the growth of A. solani with an [Formula: see text] value of 17.11 [Formula: see text], and 6,7-diarylpyrazolo[1,5-a]pyrimidines (4h) inhibited the growth of both Cytospora sp. and F. solani with [Formula: see text] values of 27.32 and 21.04 [Formula: see text], respectively. A chemoselective synthesis of 5,6-pyrazolo[1,5-a]pyrimidines 3 derivatives in excellent yields was performed under microwave irradiation and 6,7-pyrazolo[1,5-a]pyrimidines 4 were also prepared using heating method. The antifungal properties of 3 and 4 were tested against Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani, and Fusarium solani.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirazóis/química , Pirimidinas/química , Relação Estrutura-Atividade
9.
Artigo em Inglês | MEDLINE | ID: mdl-16622315

RESUMO

Spectroscopic properties within the core complex of photosystem II were investigated by studying the influence of the wavelength of excitation on the fluorescence emission spectrum. At two temperatures, when the core complex of PSII isolated from spinach was excited at six different excitation wavelengths ranging from 436 nm to 520 nm, there is no difference in the maxima of the emission spectra of the core complex, and when the core complex was excited at 480, 489, 495 and 507 nm respectively, fluorescence intensities of maxima decrease with increasing of the absorbance of the beta-carotene molecules at the four excitation wavelengths. The extent of change of the shoulder of the spectra beyond 700 nm depends on the kind of pigment molecule excited. The excitation wavelength can influence the way of energy transfer in the core complex of photosystem II. By Gaussian deconvolution analysis, at least seven groups of chlorophyll a molecules were discovered. They are Chl a(660), Chl a(670), Chl a(680), Chl a(682), Chl a(684), Chl a(687) and Chl a(690).


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência/métodos , Spinacia oleracea/metabolismo , Clorofila/química , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/química , Temperatura , beta Caroteno/química , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...