Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenomics ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444389

RESUMO

Aim: To explore the overall methylation changes in liver tissues during the formation of gallstones, as well as the key pathways and genes involved in the process. Methods: Reduced-representation bisulfite sequencing and RNA sequencing were conducted on the liver tissues of mice with gallstones and control normal mice. Results: A total of 8705 differentially methylated regions in CpG and 1410 differentially expressed genes were identified. The joint analysis indicated that aberrant DNA methylation may be associated with dysregulated gene expression in key pathways such as cholesterol metabolism and bile secretion. Conclusion: We propose for the first time that methylation changes in some key pathway genes in liver tissue may be involved in the formation of gallstones.

2.
Small ; 20(3): e2300733, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452437

RESUMO

Relapse and unresectability have become the main obstacle for further improving hepatocellular carcinoma (HCC) treatment effect. Currently, single therapy for HCC in clinical practice is limited by postoperative recurrence, intraoperative blood loss and poor patient outcomes. Multidisciplinary therapy has been recognized as the key to improving the long-term survival rate for HCC. However, the clinical application of HCC synthetic therapy is restricted by single functional biomaterials. In this study, a magnetic nanocomposite hydrogel (CG-IM) with iron oxide nanoparticle-loaded mica nanosheets (Iron oxide nanoparticles@Mica, IM) is reported. This biocompatible magnetic hydrogel integrated high injectability, magnetocaloric property, mechanical robustness, wet adhesion, and hemostasis, leading to efficient HCC multidisciplinary therapies including postoperative tumor margin treatment and percutaneous locoregional ablation. After minimally invasive hepatectomy of HCC, the CG-IM hydrogel can facilely seal the bleeding hepatic margin, followed by magnetic hyperthermia ablation to effectively prevent recurrence. In addition, CG-IM hydrogel can inhibit unresectable HCC by magnetic hyperthermia through the percutaneous intervention under ultrasound guidance.


Assuntos
Silicatos de Alumínio , Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Hidrogéis/farmacologia , Fenômenos Magnéticos
3.
Anal Chem ; 90(5): 3220-3226, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378390

RESUMO

G-triplexes have recently been identified as a new kind of DNA structures. They perhaps possess specific biological and chemical functions similar as identified G-quadruplex but can be formed by shorter G-rich sequences with only three G-tracts. However, until now, limited G-triplexes sequences have been reported, which might be due to the fact that their stability is one of the biggest concerns during their functional studies and application research. Herein, we found a G-rich sequence (5'-TGGGTAGGGCGGG-3') which can form a stable G-triplex (Tm ∼ 60 °C) at room temperature. The stable G-triplex can combine with thioflavin T and function as an efficient fluorescence light-up probe. Comparing with the traditional G-quadruplex based probe, this triplex based probe was easy to be controlled and excited. Finally, the probe was successfully applied into constructing a label-free molecular beacon for miRNA detection. Taking advantage of these abilities of the G-triplex based fluorescent probe, the challenges faced during designing G-rich sequences based fluorescent biosensors can be efficiently solved. These findings provide important information for the future application of G-triplex.


Assuntos
Benzotiazóis/química , DNA/química , Corantes Fluorescentes/química , Benzotiazóis/efeitos da radiação , DNA/efeitos da radiação , Fluorescência , Corantes Fluorescentes/efeitos da radiação , Luz , MicroRNAs/análise , Conformação de Ácido Nucleico , Espectrometria de Fluorescência/métodos
4.
J Mater Chem B ; 5(35): 7426-7432, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264192

RESUMO

In this study, beta nickel hydroxide (ß-Ni(OH)2) nanosheets, one of the transition metal oxyhydroxides with two dimensional (2D) structures, were explored as a new fluorescent biosensor platform and applied in constructing optical sensors for bioanalysis. It was found that ß-Ni(OH)2 nanosheets displayed a high fluorescence quenching ability and different affinity toward single- versus double-stranded DNA. Moreover, the absorption properties of ß-Ni(OH)2 nanosheets can be well controlled by changing cations, solution pH and the length of DNA. In comparison with some reported 2D nanosheet platforms (e.g. graphene, metal chalcogenides), the absorbed DNA can also be desorbed by degrading the ß-Ni(OH)2 nanosheets, which is a simple but effective DNA desorption method. Based on these findings, a sensitive and selective optical miRNA sensor with a detection limit of 1 pM was demonstrated by combining the fluorescence quenching ability of ß-Ni(OH)2 nanosheets and duplex-specific nuclease signal amplification. The presented sensor has been successfully used for miRNA analysis in samples containing cancer cells and shown great potential in multiplexed miRNA analysis for clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...