Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131429, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583828

RESUMO

Herein, a novel chitosan Schiff base (CS-FGA) as a sustainable corrosion inhibitor has been successfully synthesized via a simple amidation reaction by using an imidazolium zwitterion and chitosan (CS). The corrosion inhibition property of CS-FGA for mild steel (MS) in a 1.0 M HCl solution was studied by various electrochemical tests and physical characterization methods. The findings indicate that the maximum inhibition efficiency of CS-FGA as a mixed-type inhibitor for MS in 1.0 M HCl solution with 400 mg L-1 reaches 97.6 %, much much higher than the CS and the recently reported chitosan-based inhibitors. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle (WCA) results reveal that the CS-FGA molecules firmly adsorb on the MS surface to form a protective layer. The adsorption of CS-FGA on the MS surface belongs to the Langmuir adsorption isotherm containing both the physisorption and chemisorption. According to the X-ray photoelectron spectroscopy (XPS) and UV-vis spectrum, FeN bonds presented on the MS surface further prove the chemisorption between CS-FGA and Fe to generate the stable protective layer. Additionally, theoretical calculations from quantum chemical calculation (DFT) and molecular simulations (MD) were performed to reveal the inhibition mechanism of CS-FGA.


Assuntos
Quitosana , Ácido Clorídrico , Aço , Quitosana/química , Aço/química , Corrosão , Ácido Clorídrico/química , Adsorção , Bases de Schiff/química , Soluções , Espectroscopia Fotoeletrônica , Propriedades de Superfície
2.
J Colloid Interface Sci ; 652(Pt A): 369-379, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598436

RESUMO

Water splitting using transition metal sulfides as electrocatalysts has gained considerable attention in the field of renewable energy. However, their electrocatalytic activity is often hindered by unfavorable free energies of adsorbed hydrogen and oxygen-containing intermediates. Herein, phosphorus (P)-doped Co3S4/NiS2 heterostructures embedded in N-doped carbon nanoboxes were rationally synthesized via a pyrolysis-sulfidation-phosphorization strategy. The hollow structure of the carbon matrix and the nanoparticles contained within it not only result in a high specific surface area, but also protects them from corrosion and acts as a conductive pathway for efficient electron transfer. Density functional theory (DFT) calculations indicate that the introduction of P dopants improves the conductivity of NiS2 and Co3S4, promotes the charge transfer process, and creates new electrocatalytic sites. Additionally, the NiS2-Co3S4 heterojunctions can enhance the adsorption efficiency of hydrogen intermediates (H*) and lower the energy barrier of water splitting via a synergistic effect with P-doping. These characteristics collectively enable the titled catalyst to exhibit excellent electrocatalytic activity for water splitting in alkaline medium, requiring only small overpotentials of 150 and 257 mV to achieve a current density of 10 mA cm-2 for hydrogen and oxygen evolution reactions, respectively. This work sheds light on the design and optimization of efficient electrocatalysts for water splitting, with potential implications for renewable energy production.

3.
J Colloid Interface Sci ; 649: 1047-1059, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37421805

RESUMO

Electrochemical water splitting using hollow and defect-rich catalysts has emerged as a promising strategy for efficient hydrogen production. However, the rational design and controllable synthesis of such catalysts with intricate morphology and composition present significant challenges. Herein, we propose a template-engaged approach to fabricate a novel ball-in-ball hollow structure of Co-P-O@N-doped carbon with abundant oxygen vacancies. The synthesis process involves the preparation of uniform cobalt-glycerate (Co-gly) polymer microspheres as precursors, followed by surface coating with ZIF-67 layer, adjustable chemical etching by phytic acid, and controllable pyrolysis at high temperature. The resulting ball-in-ball structure offers a large number of accessible active sites and high redox reaction centers, facilitating efficient charge transport, mass transfer, and gas evolution, which are beneficial for the acceleration of electrocatalytic reaction. Additionally, density functional theory (DFT) calculations indicate that the incorporation of oxygen and the presence of Co-P dangling bonds in CoP significantly enhance the adsorption of oxygenated species, leading to improved intrinsic electroactivity at the single-site level. As a sequence, the titled catalyst exhibits remarkable electrocatalytic activity and stability for water splitting in alkaline media. Notably, it only requires a low overpotential of 283 mV to achieve a current density of 10 mA cm-2 for the oxygen evolution reaction. This work may provide some new insights into the design of complex hollow structures of phosphides with abundant defects for energy conversion.

4.
RSC Adv ; 13(10): 6936-6946, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865573

RESUMO

A photocross-linked copolymer was prepared, and could rapidly form a macropore structure in phosphate buffer solution (PBS) without the addition of porogen. The photo-crosslinking process contained the crosslinking of the copolymer itself and that with the polycarbonate substrate. The three-dimensional (3D) surface was achieved through one-step photo-crosslinking of the macropore structure. The macropore structure can be finely regulated by multiple dimensions, including monomer structure of the copolymer, PBS and copolymer concentration. Compared with the two-dimensional (2D) surface, the 3D surface has a controllable structure, a high loading capacity (59 µg cm-2) and immobilization efficiency (92%), and the effect of inhibiting the coffee ring for protein immobilization. Immunoassay results show that a 3D surface immobilized by IgG has high sensitivity (LOD value of 5 ng mL-1) and broader dynamic range (0.005-50 µg mL-1). This simple and structure-controllable method for preparing 3D surfaces modified by macropore polymer has great potential applications in the fields of biochips and biosensing.

5.
RSC Adv ; 9(20): 11013-11025, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520216

RESUMO

Two modified types of hyperbranched polymer were successfully prepared using hyperbranched polyether (HBPE) as a matrix, cis-5-norbornene-endo-2,3-dicarboxylic anhydride (CDA) or o-phthalic anhydride (PA) as a modifier and by grafting an NCO-terminated compound (IPDI-HEA). The modified hyperbranched polymers were incorporated into a typical water-soluble polyacrylate (WPA) as crosslinkers to develop high-performance waterborne UV-curable coatings via electrophoretic deposition (EPD). Although the particle size of the electrophoretic dispersion increased from 43.8 nm to 164 nm, no microphase separation occurred, and the smooth SEM images of the coatings confirmed their uniformity. The rate of photopolymerization (R p) and percentage conversion of the double bonds increased with increasing active unsaturated double bond content, and were partially affected by steric effects. Thermal gravity analysis and tensile tests indicated that the UV-curable EPD coating films exhibited better thermal stability due to their hyperbranched structure, soft and hard segment content and crosslinking density. The coated tin plate could resist chemical corrosion after immersion in NaCl solution. The coatings demonstrated strong adhesion to extremely bent tin plates and outstanding tolerance to knife-scratches and impact. This is a promising method for the design of desirable coatings in the EPD industry.

6.
RSC Adv ; 9(23): 13159-13167, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520805

RESUMO

An azide-modified long perfluorinated tail quaternary ammonium methacrylate compound (M2) was designed and synthesized. The fluorine containing polyurethane (PU-F) with strong antibacterial properties was prepared via click reaction of M2 and a clickable polymer (PU-Al), which exhibited surface segregation. The PU-F film showed a total kill against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) at an M2 content around 1 wt%. A disk diffusion test confirmed that the ligation efficiency of the antibacterial agents and polymer chains via click chemistry was excellent, and covalent conjugation of the QACs to the polymers prevented leaching.

7.
ACS Appl Mater Interfaces ; 8(27): 17499-510, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27326894

RESUMO

Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.

8.
J Phys Chem B ; 116(49): 14228-34, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23145509

RESUMO

The luminescence, excited-state absorption, and singlet oxygen generation measurements were performed on three kinds of halogenated corroles: monohydroxyl halogenated corroles (Corrole-F, Corrole-Cl, Corrole-I), peripherally fluorine-substituted corroles (F0, F5, F10, F15), and gallium complexes (F10-Ga, F15-Ga). The fluorescence intensities progressively decrease whereas the triplet quantum yields, oxygen quenching rates, and singlet oxygen quantum yields increase with the increasing of the monohydroxyl halogen atomic weight. Replacing hydrogen atoms of meso-phenyl groups with fluorine atoms induces the blue-shifts of the emission spectra, higher triplet quantum yield, and smaller oxygen quenching rates. Of all peripherally fluorine-substituted corroles, F10 exhibited the highest singlet oxygen quantum yield. In comparison with the free base corroles, both gallium corrole complexes display much stronger fluorescence with the large blue-shifts of emission peaks and slightly higher triplet quantum yields but smaller oxygen quenching rates and singlet oxygen quantum yields. The reasons for the different photophysical behaviors of these corroles are discussed.


Assuntos
Hidrocarbonetos Halogenados/química , Porfirinas/química , Oxigênio Singlete/química , Fluorescência , Gálio/química , Estrutura Molecular , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...