Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 23(7): e202100468, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34558792

RESUMO

Enantiopure α-hydroxy ketones are important building blocks of active pharmaceutical ingredients (APIs), which can be produced by thiamine-diphosphate-dependent lyases, such as benzaldehyde lyase. Here we report the discovery of a novel thermostable benzaldehyde lyase from Rhodococcus erythropolis R138 (ReBAL). While the overall sequence identity to the only experimentally confirmed benzaldehyde lyase from Pseudomonas fluorescens Biovar I (PfBAL) was only 65 %, comparison of a structural model of ReBAL with the crystal structure of PfBAL revealed only four divergent amino acids in the substrate binding cavity. Based on rational design, we generated two ReBAL variants, which were characterized along with the wild-type enzyme in terms of their substrate spectrum, thermostability and biocatalytic performance in the presence of different co-solvents. We found that the new enzyme variants have a significantly higher thermostability (up to 22 °C increase in T50 ) and a different co-solvent-dependent activity. Using the most stable variant immobilized in packed-bed reactors via the SpyCatcher/SpyTag system, (R)-benzoin was synthesized from benzaldehyde over a period of seven days with a stable space-time-yield of 9.3 mmol ⋅ L-1 ⋅ d-1 . Our work expands the important class of benzaldehyde lyases and therefore contributes to the development of continuous biocatalytic processes for the production of α-hydroxy ketones and APIs.


Assuntos
Cetonas , Rhodococcus , Aldeído Liases/metabolismo , Benzaldeídos
2.
Chemistry ; 25(70): 15998-16001, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31618489

RESUMO

Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio- and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose-based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate-catalysed Heck reaction, 4-hydroxystilbene was synthesized from p-coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.

3.
Biol Chem ; 400(11): 1519-1527, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31472057

RESUMO

The optimization of enzyme properties for specific reaction conditions enables their tailored use in biotechnology. Predictions using established computer-based methods, however, remain challenging, especially regarding physical parameters such as thermostability without concurrent loss of activity. Employing established computational methods such as energy calculations using FoldX can lead to the identification of beneficial single amino acid substitutions for the thermostabilization of enzymes. However, these methods require a three-dimensional (3D)-structure of the enzyme. In contrast, coevolutionary analysis is a computational method, which is solely based on sequence data. To enable a comparison, we employed coevolutionary analysis together with structure-based approaches to identify mutations, which stabilize an enzyme while retaining its activity. As an example, we used the delicate dimeric, thiamine pyrophosphate dependent enzyme ketoisovalerate decarboxylase (Kivd) and experimentally determined its stability represented by a T50 value indicating the temperature where 50% of enzymatic activity remained after incubation for 10 min. Coevolutionary analysis suggested 12 beneficial mutations, which were not identified by previously established methods, out of which four mutations led to a functional Kivd with an increased T50 value of up to 3.9°C.


Assuntos
Aminoácidos/análise , Carboxiliases/metabolismo , Temperatura , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Carboxiliases/química , Estabilidade Enzimática , Modelos Moleculares , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...