Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(6): uhae113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898961

RESUMO

Chieh-qua is an important cucurbit crop and very popular in South China and Southeast Asia. Despite its significance, its genetic basis and domestication history are unclear. In this study, we have successfully generated a chromosome-level reference genome assembly for the chieh-qua 'A36' using a hybrid assembly strategy that combines PacBio long reads and Illumina short reads. The assembled genome of chieh-qua is approximately 953.3 Mb in size and is organized into 12 chromosomes, with contig N50 of 6.9 Mb and scaffold N50 of 68.2 Mb. Notably, the chieh-qua genome is comparable in size to the wax gourd genome. Through gene prediction analysis, we have identified a total of 24 593 protein-coding genes in the A36 genome. Additionally, approximately 56.6% (539.3 Mb) of the chieh-qua genome consists of repetitive sequences. Comparative genome analysis revealed that chieh-qua and wax gourd are closely related, indicating a close evolutionary relationship between the two species. Population genomic analysis, employing 129 chieh-qua accessions and 146 wax gourd accessions, demonstrated that chieh-qua exhibits greater genetic diversity compared to wax gourd. We also employed the GWAS method to identify related QTLs associated with subgynoecy, an interested and important trait in chieh-qua. The MYB59 (BhiCQ0880026447) exhibited relatively high expression levels in the shoot apex of four subgynoecious varieties compared with monoecious varieties. Overall, this research provides insights into the domestication history of chieh-qua and offers valuable genomic resources for further molecular research.

2.
Front Plant Sci ; 14: 1131735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123826

RESUMO

Cucumber is one of the most important vegetable crops, which is widely planted all over the world. Cucumber always suffers from high-temperature stress in South China in summer. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis was used to study the differential metabolites of cucumber anther between high-temperature (HT) stress and normal condition (CK). After HT, the pollen fertility was significantly reduced, and abnormal anther structures were observed by the paraffin section. In addition, the metabolomics analysis results showed that a total of 125 differential metabolites were identified after HT, consisting of 99 significantly upregulated and 26 significantly downregulated metabolites. Among these differential metabolites, a total of 26 related metabolic pathways were found, and four pathways showed significant differences, namely, porphyrin and chlorophyll metabolism; plant hormone signal transduction; amino sugar and nucleotide sugar metabolism; and glycine, serine, and threonine metabolism. In addition, pollen fertility was decreased by altering the metabolites of plant hormone signal transduction and amino acid and sugar metabolism pathway under HT. These results provide a comprehensive understanding of the metabolic changes in cucumber anther under HT.

3.
Front Plant Sci ; 14: 1158735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152167

RESUMO

Gynoecy demonstrates an earlier production of hybrids and a higher yield and improves the efficiency of hybrid seed production. Therefore, the utilization of gynoecy is beneficial for the genetic breeding of chieh-qua. However, little knowledge of gynoecious-related genes in chieh-qua has been reported until now. Here, we used an F2 population from the cross between the gynoecious line 'A36' and the monoecious line 'SX' for genetic mapping and revealed that chieh-qua gynoecy was regulated by a single recessive gene. We fine-mapped it into a 530-kb region flanked by the markers Indel-3 and KASP145 on Chr.8, which harbors eight candidate genes. One of the candidate genes, Bhi08G000345, encoding networked protein 4 (CqNET4), contained a non-synonymous SNP resulting in the amino acid substitution of isoleucine (ATA; I) to methionine (ATG; M). CqNET4 was prominently expressed in the female flower, and only three genes related to ethylene synthesis were significantly expressed between 'A36' and 'SX.' The results presented here provide support for the CqNET4 as the most likely candidate gene for chieh-qua gynoecy, which differed from the reported gynoecious genes.

4.
Front Plant Sci ; 12: 758976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745192

RESUMO

Cucumber (Cucumis sativus L.) is an important vegetable crop, which is thermophilic not heat resistant. High-temperature stress always results in sterility at reproductive stage. In the present study, we evaluate the male flower developmental changes under normal (CK) and heat stress (HS) condition. After HS, the activities of peroxidase (POD) and superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were increased. In addition, the pollen fertility was significantly decreased; and abnormal tapetum and microspore were observed by paraffin section. Transcriptome analysis results presented that total of 5828 differentially expressed genes (DEGs) were identified after HS. Among these DEGs, 20 DEGs were found at four stages, including DNA binding transcription factor, glycosyltransferase, and wound-responsive family protein. The gene ontology term of carbohydrate metabolic process was significantly enriched in all anther stages, and many saccharides and starch synthase-related genes, such as invertase, sucrose synthase, and starch branching enzyme, were significantly different expressed in HS compared with CK. Furthermore, co-expression network analysis showed a module (midnightblue) strongly consistent with HS, and two hub genes (CsaV3_6G004180 and CsaV3_5G034860) were found with a high degree of connectivity to other genes. Our results provide comprehensive understandings on male flower development in cucumber under HS.

5.
BMC Plant Biol ; 20(1): 386, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831013

RESUMO

BACKGROUND: Fruit skin color play important role in commercial value of cucumber, which is mainly determined by the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value. RESULTS: The results showed that chlorophyll a, chlorophyll b and carotenoid content in fruit skin were higher in Lv (dark green skin) than Bai (light green skin) on fruit skin. Cytological observation showed more chloroplast existed in fruit skin cells of Lv. A total of 162 significantly different metabolites were found between the fruit skin of the two genotypes by metabolome analysis, including 40 flavones, 9 flavanones, 8 flavonols, 6 anthocyanins, and other compounds. Crucial anthocyanins and flavonols for fruit skin color, were detected significantly decreased in fruit skin of Bai compared with Lv. By RNA-seq assay, 4516 differentially expressed genes (DEGs) were identified between two cultivars. Further analyses suggested that low expression level of chlorophyll biosynthetic genes, such as chlM, por and NOL caused less chlorophylls or chloroplast in fruit skin of Bai. Meanwhile, a predicted regulatory network of anthocyanin biosynthesis was established to illustrate involving many DEGs, especially 4CL, CHS and UFGT. CONCLUSIONS: This study uncovered significant differences between two cucumber genotypes with different fruit color using metabolome and RNA-seq analysis. We lay a foundation to understand molecular regulation mechanism on formation of cucumber skin color, by exploring valuable genes, which is helpful for cucumber breeding and improvement on fruit skin color.


Assuntos
Antocianinas/metabolismo , Clorofila A/metabolismo , Cor , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/genética , Clorofila A/genética , Metaboloma , Transcriptoma
6.
Funct Plant Biol ; 47(8): 704-715, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485134

RESUMO

Heat stress is a major environmental factor limiting plant productivity and quality in agriculture. Cucumber, one of the most important vegetables among cucurbitaceae, prefers to grow in a warm environment. Until now the molecular knowledge of heat stress in cucumber remained unclear. In this study, we performed transcriptome analysis using two diverse genetic cucumber cultivars, L-9 and A-16 grown under normal and heat stress. L-9 displayed heat-tolerance phenotype with higher superoxide dismutase enzyme (SOD) enzyme activity and lower malondialdehyde (MDA) content than A-16 under heat stress. RNA-sequencing revealed that a total of 963 and 2778 genes are differentially expressed between L-9 and A-16 under normal and heat stress respectively. In addition, we found that differentially expressed genes (DEGs) associated with plant hormones signally pathway, transcription factors, and secondary metabolites showed significantly change in expression level after heat stress, which were confirmed by quantitative real-time PCR assay. Our results not only explored several crucial genes involved in cucumber heat resistance, but also provide a new insight into studying heat stress.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Folhas de Planta/genética , Transcriptoma
7.
Nat Commun ; 10(1): 5158, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727887

RESUMO

The botanical family Cucurbitaceae includes a variety of fruit crops with global or local economic importance. How their genomes evolve and the genetic basis of diversity remain largely unexplored. In this study, we sequence the genome of the wax gourd (Benincasa hispida), which bears giant fruit up to 80 cm in length and weighing over 20 kg. Comparative analyses of six cucurbit genomes reveal that the wax gourd genome represents the most ancestral karyotype, with the predicted ancestral genome having 15 proto-chromosomes. We also resequence 146 lines of diverse germplasm and build a variation map consisting of 16 million variations. Combining population genetics and linkage mapping, we identify a number of regions/genes potentially selected during domestication and improvement, some of which likely contribute to the large fruit size in wax gourds. Our analyses of these data help to understand genome evolution and function in cucurbits.


Assuntos
Cucurbitaceae/genética , Variação Genética , Genoma de Planta , Cariótipo , Filogenia , Domesticação , Evolução Molecular , Frutas/anatomia & histologia , Frutas/genética , Genética Populacional , Tamanho do Genoma , Anotação de Sequência Molecular , Tamanho do Órgão/genética
8.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781658

RESUMO

Temperature rising caused by global warming has imposed significant negative effects on crop qualities and yields. To get the well-known molecular mechanism upon the higher temperature, we carefully analyzed the RNA sequencing-based transcriptomic responses of two contrasting chieh-qua genotypes: A39 (heat-tolerant) and H5 (heat-sensitive). In this study, twelve cDNA libraries generated from A39 and H5 were performed with a transcriptome assay under normal and heat stress conditions, respectively. A total of 8705 differentially expressed genes (DEGs) were detected under normal conditions (3676 up-regulated and 5029 down-regulated) and 1505 genes under heat stress (914 up-regulated and 591 down-regulated), respectively. A significant positive correlation between RNA-Seq data and qRT-PCR results was identified. DEGs related to heat shock proteins (HSPs), ubiquitin-protein ligase, transcriptional factors, and pentatricopeptide repeat-containing proteins were significantly changed after heat stress. Several genes, which encoded HSPs (CL2311.Contig3 and CL6612.Contig2), cytochrome P450 (CL4517.Contig4 and CL683.Contig7), and bHLH TFs (CL914.Contig2 and CL8321.Contig1) were specifically induced after four days of heat stress. DEGs detected in our study between these two contrasting cultivars would provide a novel basis for isolating useful candidate genes of heat stress responses in chieh-qua.


Assuntos
Cucurbitaceae/genética , Cucurbitaceae/fisiologia , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013000

RESUMO

Drought stress is one of the most serious threats to cucumber quality and yield. To gain a good understanding of the molecular mechanism upon water deficiency, we compared and analyzed the RNA sequencing-based transcriptomic responses of two contrasting cucumber genotypes, L-9 (drought-tolerant) and A-16 (drought-sensitive). In our present study, combining the analysis of phenotype, twelve samples of cucumber were carried out a transcriptomic profile by RNA-Seq under normal and water-deficiency conditions, respectively. A total of 1008 transcripts were differentially expressed under normal conditions (466 up-regulated and 542 down-regulated) and 2265 transcripts under drought stress (979 up-regulated and 1286 down-regulated). The significant positive correlation between RNA sequencing data and a qRT-PCR analysis supported the results found. Differentially expressed genes (DEGs) involved in metabolic pathway and biosynthesis of secondary metabolism were significantly changed after drought stress. Several genes, which were related to sucrose biosynthesis (Csa3G784370 and Csa3G149890) and abscisic acid (ABA) signal transduction (Csa4M361820 and Csa6M382950), were specifically induced after 4 days of drought stress. DEGs between the two contrasting cultivars identified in our study provide a novel insight into isolating helpful candidate genes for drought tolerance in cucumber.


Assuntos
Cucumis sativus/genética , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma , Cucumis sativus/classificação , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Estresse Fisiológico , Água/metabolismo
10.
3 Biotech ; 7(1): 86, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28501986

RESUMO

The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.

11.
BMC Genomics ; 16: 1035, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26647294

RESUMO

BACKGROUND: High-density map is a valuable tool for genetic and genomic analysis. Although wax gourd is a widely distributed vegetable of Cucurbitaceae and has important medicinal and health value, no genetic map has been constructed because of the lack of efficient markers. Specific-locus amplified fragment sequencing (SLAF-seq) is a newly developed high-throughput strategy for large-scale single nucleotide polymorphism (SNP) discovery and genotyping. RESULTS: In our present study, we constructed a high-density genetic map by using SLAF-seq and identified a locus controlling pericarp color in wax gourd. An F2 population of 140 individuals and their two parents were subjected to SLAF-seq. A total of 143.38 M pair-end reads were generated. The average sequencing depth was 26.51 in the maternal line (B214), 27.01 in the parental line (B227), and 5.11 in each F2 individual. When filtering low-depth SLAF tags, a total of 142,653 high-quality SLAFs were detected, and 22,151 of them were polymorphic, with a polymorphism rate of 15.42 %. And finally, 4,607 of the polymorphic markers were selected for genetic map construction, and 12 linkage groups (LGs) were generated. The map spanned 2,172.86 cM with an average distance between adjacent markers for 0.49 cM. The inheritance of pericarp color was also studied, which showed that the pericarp color was controlled by one single gene. And based on the newly constructed high-density map, a single locus locating on chromosome 5 was identified for controlling the pericarp color of wax gourd. CONCLUSIONS: This is the first report of high-density genetic map construction and gene mapping in wax gourd, which will be served as an invaluable tool for gene mapping, marker assisted breeding, map-based gene cloning, comparative mapping and draft genome assembling of wax gourd.


Assuntos
Mapeamento Cromossômico/métodos , Cucurbitaceae/genética , Genômica/métodos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Cruzamento , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único
12.
Gene ; 551(1): 26-32, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108132

RESUMO

Wax gourd (2n=2x=24) is an important vegetable species in Cucurbitaceae. Because it can be stored for a very long period of time, it plays an important role in ensuring the annual supply and regulating off-season supply of the vegetables. However, the availability of genetic information about wax gourd is limited. This study aimed to identify the useful genetic information for wax gourd. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia retrotransposons were isolated from the genome of wax gourd using degenerate oligonucleotide primers. A total of twenty eight RT sequences were obtained, which showed high heterogeneity with the similarity ranging from 47.5% to 94.3%. Sixteen (57.1%) of them were found to be defective, being disrupted by stop codons and/or frameshift mutations. These 28 sequences were divided into five subfamilies. The comparative phylogenetic analysis with other Cucurbitaceae species from GenBank database showed that most retrotransposons derived from the same genus tended to cluster together, although there were a few exceptions. These results indicate that both vertical transmission and horizontal transmission are the sources of Ty1-copia retrotransposons in wax gourd. Fluorescent in situ hybridization (FISH) with Ty1-copia retrotransposon sequences as probes revealed that this kind of retrotransposons had a dispersed genomic organization, physically distributed among all the chromosomes of wax gourd, with clusters in the heterochromatin regions. This is the first report of Ty1-copia retrotransposons in wax gourd, which would be helpful for our understanding about the organization and evolutions of wax gourd genome and also provide valuable information for our utilization of wax gourd retrotransposons.


Assuntos
Cucurbitaceae/genética , DNA Polimerase Dirigida por RNA/genética , Retroelementos/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
13.
PLoS One ; 8(8): e71054, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951078

RESUMO

BACKGROUND: Wax gourd is a widely used vegetable of Cucuribtaceae, and also has important medicinal and health values. However, the genomic resources of wax gourd were scarcity, and only a few nucleotide sequences could be obtained in public databases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined transcriptome in wax gourd. More than 44 million of high quality reads were generated from five different tissues of wax gourd using Illumina paired-end sequencing technology. Approximately 4 Gbp data were generated, and de novo assembled into 65,059 unigenes, with an N50 of 1,132 bp. Based on sequence similarity search with known protein database, 36,070 (55.4%) showed significant similarity to known proteins in Nr database, and 24,969 (38.4%) had BLAST hits in Swiss-Prot database. Among the annotated unigenes, 14,994 of wax gourd unigenes were assigned to GO term annotation, and 23,977 were found to have COG classifications. In addition, a total of 18,713 unigenes were assigned to 281 KEGG pathways. Furthermore, 6,242 microsatellites (simple sequence repeats) were detected as potential molecular markers in wax gourd. Two hundred primer pairs for SSRs were designed for validation of the amplification and polymorphism. The result showed that 170 of the 200 primer pairs were successfully amplified and 49 (28.8%) of them exhibited polymorphisms. CONCLUSION/SIGNIFICANCE: Our study enriches the genomic resources of wax gourd and provides powerful information for future studies. The availability of this ample amount of information about the transcriptome and SSRs in wax gourd could serve as valuable basis for studies on the physiology, biochemistry, molecular genetics and molecular breeding of this important vegetable crop.


Assuntos
Cucurbitaceae/genética , Proteínas de Plantas/genética , Transcriptoma , Ontologia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...