Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(47): 54797-54807, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962367

RESUMO

Due to their weak intrinsic spin-orbit coupling and a distinct bandgap of 3.06 eV, 2D carbon nitride (CN) flakes are promising materials for next-generation spintronic devices. However, achieving strong room-temperature (RT) and ambient-stable ferromagnetism (FM) remains a huge challenge. Here, we demonstrate that the strong RT FM with a high Curie temperature (TC) up to ∼400 K and saturation magnetization (Ms) of 2.91 emu/g can be achieved. Besides, the RT FM exhibits excellent air stability, with Ms remaining stable for over 6 months. Through the magneto-optic Kerr effect, Hall device, X-ray magnetic circular dichroism, and magnetic force microscopy measurements, we acquired clear evidence of magnetic behavior and magnetic domain evolutions at room temperature. Electrical and optical measurements confirm that the Co-doped CN retains its semiconductor properties. Detailed structural characterizations confirm that the single-atom Co coordination and nitrogen defects as well as C-C covalent bonds are simultaneously introduced into CN. Density functional theory calculations reveal that introducing C-C bonds causes carrier spin polarization, and spin-polarized carrier-mediated magnetic exchange between adjacent Co atoms leads to long-range magnetic ordering in CN. We believe that our findings provide a strong experimental foundation for the enormous potential of 2D wide bandgap semiconductor spintronic devices.

2.
Nanoscale ; 10(25): 12062-12067, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29911217

RESUMO

The interfacial Dzyaloshinskii-Moriya interaction (DMI) in ferromagnetic/heavy metal ultra-thin film structures has attracted a lot of attention thanks to its capability to stabilize Néel-type domain walls (DWs) and magnetic skyrmions for the realization of non-volatile memory and logic devices. In this study, we demonstrate that magnetic properties in perpendicularly magnetized Ta/Pt/Co/MgO/Pt heterostructures, such as magnetization and DMI, can be significantly influenced by the MgO thickness. To avoid the excessive oxidation of Co, an ultrathin Mg layer is inserted to improve the quality of the Co-MgO interface. By using field-driven domain wall expansion in the creep regime, we find that non-monotonic tendencies of the DMI field appear when changing the thickness of MgO. With the insertion of a monatomic Mg layer, the strength of the DMI could reach a high level and saturate. We conjecture that the efficient control of the DMI is a result of subtle changes of both Pt/Co and Co/MgO interfaces, which provides a method to optimize the design of ultra-thin structures achieving skyrmion electronics.

3.
Nat Commun ; 9(1): 671, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445186

RESUMO

Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm2, which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm-2 for devices with a 45-nm radius.

4.
IEEE Trans Biomed Circuits Syst ; 10(4): 828-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27214913

RESUMO

Artificial synaptic devices implemented by emerging post-CMOS non-volatile memory technologies such as Resistive RAM (RRAM) have made great progress recently. However, it is still a big challenge to fabricate stable and controllable multilevel RRAM. Benefitting from the control of electron spin instead of electron charge, spintronic devices, e.g., magnetic tunnel junction (MTJ) as a binary device, have been explored for neuromorphic computing with low power dissipation. In this paper, a compound spintronic device consisting of multiple vertically stacked MTJs is proposed to jointly behave as a synaptic device, termed as compound spintronic synapse (CSS). Based on our theoretical and experimental work, it has been demonstrated that the proposed compound spintronic device can achieve designable and stable multiple resistance states by interfacial and materials engineering of its components. Additionally, a compound spintronic neuron (CSN) circuit based on the proposed compound spintronic device is presented, enabling a multi-step transfer function. Then, an All Spin Artificial Neural Network (ASANN) is constructed with the CSS and CSN circuit. By conducting system-level simulations on the MNIST database for handwritten digital recognition, the performance of such ASANN has been investigated. Moreover, the impact of the resolution of both the CSS and CSN and device variation on the system performance are discussed in this work.


Assuntos
Redes Neurais de Computação , Magnetismo , Memória , Neurônios/química , Semicondutores , Sinapses/química
5.
Materials (Basel) ; 9(1)2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28787842

RESUMO

Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ) becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM) for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS) circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm) to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

6.
Sci Rep ; 5: 18173, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26656721

RESUMO

Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...