Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
J Environ Sci (China) ; 147: 200-216, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003040

RESUMO

Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.


Assuntos
Monitoramento Ambiental , Microplásticos , Microplásticos/análise , Monitoramento Ambiental/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poluentes Químicos da Água/análise
2.
ACS Omega ; 9(25): 27643-27654, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947818

RESUMO

The fuel in a scramjet combustor must be injected into a high-speed crossflow and mixed with supersonic air in a very short period of time in order for the scramjet jet to operate reliably. More generally, the supersonic air is produced by the lower cover, similar to a Laval type nozzle, of the scramjet combustor. However, significant variation in lower cover geometry is prone to produce unstable vortexes. The unstable vortexes are accompanied by nonuniform stress and strain and are detrimental to the lower cover, even to the combustor. Inspired by mechanical design, this study proposes to change lower cover geometry by decreasing its sizes and then evaluates effects of these changes on kerosene fuel-air interaction in the combustor. The evaluation is based on three-dimensional computational fluid dynamics with couple level set and volume of fluids, which characterizes the penetration height, span expansion area, shock wave angle, and Sauter mean diameter of kerosene jets for three different injection diameters (0.5, 1.0, and 1.5 mm). The simulated air-kerosene interactions reasonably agree with the past numerical findings at identical working conditions. This result demonstrates the effectiveness of the changed lower cover geometry for the scramjet combustor.

3.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984998

RESUMO

Acute pancreatitis (AP) is a life-threatening inflammatory disease with no specific therapy. Excessive cytoplasmic Ca2+ elevation and intracellular ATP depletion are responsible for the initiation of AP. Inhibition of Ca2+ release-activated Ca2+ (CRAC) channels has been proposed as a potential treatment, and currently, a novel selective CRAC channel inhibitor CM4620 (Auxora, CalciMedica) is in Phase 2b human trials. While CM4620 is on track to become the first effective treatment for AP, it does not produce complete protection in animal models. Recently, an alternative approach has suggested reducing ATP depletion with a natural carbohydrate galactose. Here, we have investigated the possibility of using the smallest effective concentration of CM4620 in combination with galactose. Protective effects of CM4620, in the range of 1-100 n m, have been studied against necrosis induced by bile acids, palmitoleic acid, or l-asparaginase. CM4620 markedly protected against necrosis induced by bile acids or asparaginase starting from 50 n m and palmitoleic acid starting from 1 n m. Combining CM4620 and galactose (1 m m) significantly reduced the extent of necrosis to near-control levels. In the palmitoleic acid-alcohol-induced experimental mouse model of AP, CM4620 at a concentration of 0.1 mg/kg alone significantly reduced edema, necrosis, inflammation, and the total histopathological score. A combination of 0.1 mg/kg CM4620 with galactose (100 m m) significantly reduced further necrosis, inflammation, and histopathological score. Our data show that CM4620 can be used at much lower concentrations than reported previously, reducing potential side effects. The novel combination of CM4620 with galactose synergistically targets complementary pathological mechanisms of AP.


Assuntos
Galactose , Pancreatite , Galactose/farmacologia , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Camundongos , Bloqueadores dos Canais de Cálcio/farmacologia , Cinacalcete/farmacologia , Cinacalcete/uso terapêutico , Humanos , Masculino , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Necrose/tratamento farmacológico , Doença Aguda , Ácidos Graxos Monoinsaturados
4.
Apoptosis ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023830

RESUMO

The enzyme AKR1C3 plays a crucial role in hormone and drug metabolism and is associated with abnormal expression in liver cancer, leading to tumor progression and poor prognosis. Nanoparticles modified with HSA can modulate the tumor microenvironment by enhancing photodynamic therapy to induce apoptosis in tumor cells and alleviate hypoxia. Therefore, exploring the potential regulatory mechanisms of resveratrol on AKR1C3 through the construction of HSA-RSV NPs carriers holds significant theoretical and clinical implications for the treatment of liver cancer. The aim of this study is to investigate the targeted regulation of AKR1C3 expression through the loading of resveratrol (RSV) on nanomaterials HSA-RSV NPs (Nanoparticles) in order to alleviate tumor hypoxia and inhibit the progression of hepatocellular carcinoma (HCC), and to explore its molecular mechanism. PubChem database and PharmMapper server were used to screen the target genes of RSV. HCC-related differentially expressed genes (DEGs) were analyzed through the GEO dataset, and relevant genes were retrieved from the GeneCards database, resulting in the intersection of the three to obtain candidate DEGs. GO and KEGG enrichment analyses were performed on the candidate DEGs to analyze the potential cellular functions and molecular signaling pathways affected by the main target genes. The cytohubba plugin was used to screen the top 10 target genes ranked by Degree and further intersected the results of LASSO and Random Forest (RF) to obtain hub genes. The expression analysis of hub genes and the prediction of malignant tumor prognosis were conducted. Furthermore, a pharmacophore model was constructed using PharmMapper. Molecular docking simulations were performed using AutoDockTools 1.5.6 software, and ROC curve analysis was performed to determine the core target. In vitro cell experiments were carried out by selecting appropriate HCC cell lines, treating HCC cells with different concentrations of RSV, or silencing or overexpressing AKR1C3 using lentivirus. CCK-8, clone formation, flow cytometry, scratch experiment, and Transwell were used to measure cancer cell viability, proliferation, migration, invasion, and apoptosis, respectively. Cellular oxygen consumption rate was analyzed using the Seahorse XF24 analyzer. HSA-RSV NPs were prepared, and their characterization and cytotoxicity were evaluated. The biological functional changes of HCC cells after treatment were detected. An HCC subcutaneous xenograft model was established in mice using HepG2 cell lines. HSA-RSV NPs were injected via the tail vein, with a control group set, to observe changes in tumor growth, tumor targeting of NPs, and biological safety. TUNEL, Ki67, and APC-hypoxia probe staining were performed on excised tumor tissue to detect tumor cell proliferation, apoptosis, and hypoxia. Lentivirus was used to silence or overexpress AKR1C3 simultaneously with the injection of HSA-RSV NPs via the tail vein to assess the impact of AKR1C3 on the regulation of HSA-RSV NPs in HCC progression. Bioinformatics analysis revealed that AKR1C3 is an important target gene involved in the regulation of HCC by RSV, which is associated with the prognosis of HCC patients and upregulated in expression. In vitro cell experiments showed that RSV significantly inhibits the respiratory metabolism of HCC cells, suppressing their proliferation, migration, and invasion and promoting apoptosis. Silencing AKR1C3 further enhances the toxicity of RSV towards HCC cells. The characterization and cytotoxicity experiments of nanomaterials demonstrated the successful construction of HSA-RSV NPs, which exhibited stronger inhibitory effects on HCC cells. In vivo, animal experiments further confirmed that targeted downregulation of AKR1C3 by HSA-RSV NPs suppresses the progression of HCC and tumor hypoxia while exhibiting tumor targeting and biological safety. Targeted downregulation of AKR1C3 by HSA-RSV NPs can alleviate HCC tumor hypoxia and inhibit the progression of HCC.

5.
Anal Chem ; 96(28): 11455-11462, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968402

RESUMO

Efficient, mild, and reversible adsorption of nucleic acids onto nanomaterials represents a promising analytical approach for medical diagnosis. However, there is a scarcity of efficient and reversible nucleic acid adsorption nanomaterials. Additionally, the lack of comprehension of the molecular mechanisms governing their interactions poses significant challenges. These issues hinder the rational design and analytical applications of the nanomaterials. Herein, we propose an ultra-efficient nucleic acid affinity nanomaterial based on programmable lanthanide metal-organic frameworks (Ln-MOFs). Through experiments and density functional theory calculations, a rational design guideline for nucleic acid affinity of Ln-MOF was proposed, and a modular and flexible preparation scheme was provided. Then, Er-TPA (terephthalic acid) MOF emerged as the optimal candidate due to its pore size-independent adsorption and desorption capabilities for nucleic acids, enabling ultra-efficient adsorption (about 150% mass ratio) within 1 min. Furthermore, we elucidate the molecular-level mechanisms underlying the Ln-MOF adsorption of single- and double-stranded DNA and G4 structures. The affinity nanomaterial based on Ln-MOF exhibits robust nucleic acid extraction capability (4-fold higher than commercial reagent kits) and enables mild and reversible CRISPR/Cas9 functional regulation. This method holds significant promise for broad application in DNA/RNA liquid biopsy and gene editing, facilitating breakthroughs in analytical chemistry, pharmacy, and medical research.


Assuntos
DNA , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Elementos da Série dos Lantanídeos/química , Adsorção , DNA/química , DNA/isolamento & purificação , Ácidos Ftálicos/química , Nanoestruturas/química , Teoria da Densidade Funcional , Humanos
6.
Anal Chem ; 96(24): 9984-9993, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833588

RESUMO

Metal-organic frameworks (MOFs) show unique advantages in simulating the dynamics and fidelity of natural coordination. Inspired by zinc finger protein, a second linker was introduced to affect the homogeneous MOF system and thus facilitate the emergence of diverse functionalities. Under the systematic identification of 12 MOF species (i.e., metal ions, linkers) and 6 second linkers (trigger), a dissipative system consisting of Co-BDC-NO2 and o-phenylenediamine (oPD) was screened out, which can rapidly and in situ generate a high photothermal complex (η = 36.9%). Meanwhile, both the carboxylation of epigenetic modifications and metal ion (Fe3+, Ni2+, Cu2+, Zn2+, Co2+ and Mn2+) screening were utilized to improve the local coordination environment so that the adaptable Co-MOF growth on the DNA strand was realized. Thus, epigenetic modification information on DNA was converted to an amplified metal ion signal, and then oPD was further introduced to generate bimodal dissipative signals by which a simple, high-sensitivity detection strategy of 5-hydroxymethylcytosine (LOD = 0.02%) and 5-formylcytosine (LOD = 0.025‰) was developed. The strategy provides one low-cost method (< 0.01 $/sample) for quantifying global epigenetic modifications, which greatly promotes epigenetic modification-based early disease diagnosis. This work also proposes a general heterocoordination design concept for molecular recognition and signal transduction, opening a new MOF-based sensing paradigm.


Assuntos
Cobalto , DNA , Epigênese Genética , Estruturas Metalorgânicas , Fenilenodiaminas , Estruturas Metalorgânicas/química , Cobalto/química , DNA/química , Fenilenodiaminas/química , 5-Metilcitosina/química , 5-Metilcitosina/análise , 5-Metilcitosina/análogos & derivados , Citosina/química , Citosina/análogos & derivados , Limite de Detecção
7.
Inflammation ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819583

RESUMO

In this study, we investigated the role of hypoxia in the development of chronic inflammatory bowel disease (IBD), focusing on its impact on the HIF-1α signaling pathway through the upregulation of lipocalin 2 (LCN2). Using a murine model of colitis induced by sodium dextran sulfate (DSS) under hypoxic conditions, transcriptome sequencing revealed LCN2 as a key gene involved in hypoxia-mediated exacerbation of colitis. Bioinformatics analysis highlighted the involvement of crucial pathways, including HIF-1α and glycolysis, in the inflammatory process. Immune infiltration analysis demonstrated the polarization of M1 macrophages in response to hypoxic stimulation. In vitro studies using RAW264.7 cells further elucidated the exacerbation of inflammation and its impact on M1 macrophage polarization under hypoxic conditions. LCN2 knockout cells reversed hypoxia-induced inflammatory responses, and the HIF-1α pathway activator dimethyloxaloylglycine (DMOG) confirmed LCN2's role in mediating inflammation via the HIF-1α-induced glycolysis pathway. In a DSS-induced colitis mouse model, oral administration of LCN2-silencing lentivirus and DMOG under hypoxic conditions validated the exacerbation of colitis. Evaluation of colonic tissues revealed altered macrophage polarization, increased levels of inflammatory factors, and activation of the HIF-1α and glycolysis pathways. In conclusion, our findings suggest that hypoxia exacerbates colitis by modulating the HIF-1α pathway through LCN2, influencing M1 macrophage polarization in glycolysis. This study contributes to a better understanding of the mechanisms underlying IBD, providing potential therapeutic targets for intervention.

8.
J Hazard Mater ; 472: 134616, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754232

RESUMO

Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.


Assuntos
Resistência Microbiana a Medicamentos , Hormese , Salinidade , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Hormese/efeitos dos fármacos , Antibacterianos/farmacologia , Genes Bacterianos/efeitos dos fármacos , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética
9.
Water Res ; 258: 121768, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761594

RESUMO

Microplastics (MPs) are pervasive in the environment and inevitably undergo photoaging due to UV irradiation. This study delved into the dynamic releasing and transformation process of toxic chemicals from polystyrene microplastics (PS MPs) during photoaging, a subject that remains underexplored. It was revealed that photoaging led to substantial alterations in the physicochemical properties of PS MPs, initiating polymer chain scission and facilitating the release of a large number of toxic chemicals, including numerous organic compounds and several inorganic compounds. The kinetic analysis revealed a dynamic release pattern for PS MPs, where under varying UV intensities (2, 5, and 10 mW/cm2), the release rate (kDOC) initially increased and then decreased, peaking at a total irradiation energy of approximately 7 kW·h/m2. Furthermore, chemicals in leachate were transformed into compounds with smaller molecular weight, higher oxidized and greater unsaturated state over the prolonged photoaging. This transformation was primarily attributed to two reasons. Firstly, the aged PS MPs released chemicals with higher oxidized state compared to the pristine MPs. Secondly, the chemicals previously released underwent further reactions. Besides, among the complex leachate generated by aged PS MPs, the organic chemicals characterized by small molecular weight and high oxidized state exhibited notable acute toxicity, whereas heavy metal ions showed lesser toxicity, and anions were non-toxic. This study shed more light on the photoaging process of PS MPs, releasing characteristics of organic chemicals, and the potential environmental risks associated with plastic wastes.


Assuntos
Microplásticos , Poliestirenos , Poluentes Químicos da Água , Microplásticos/toxicidade , Poliestirenos/química , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Raios Ultravioleta , Cinética
10.
Biochem Pharmacol ; 225: 116279, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740221

RESUMO

Berberine, a natural isoquinoline alkaloid, exhibits a variety of pharmacological effects, but the pharmacological targets and mechanisms remain elusive. Here, we report a novel finding that berberine inhibits acetylcholine (ACh)-induced intracellular Ca2+ oscillations, mediated through an inhibition of the muscarinic subtype 3 (M3) receptor. Patch-clamp recordings and confocal Ca2+ imaging were applied to acute dissociated pancreatic acinar cells prepared from CD1 mice to examine the effects of berberine on ACh-induced Ca2+ oscillations. Whole-cell patch-clamp recordings showed that berberine (from 0.1 to 10 µM) reduced ACh-induced Ca2+ oscillations in a concentration-dependent manner, and this inhibition also depended on ACh concentrations. The inhibitory effect of berberine neither occurred in intracellular targets nor extracellular cholecystokinin (CCK) receptors, chloride (Cl-) channels, and store-operated Ca2+ channels. Together, the results demonstrate that berberine directly inhibits the muscarinic M3 receptors, further confirmed by evidence of the interaction between berberine and M3 receptors in pancreatic acinar cells.


Assuntos
Células Acinares , Berberina , Sinalização do Cálcio , Receptor Muscarínico M3 , Animais , Berberina/farmacologia , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Camundongos , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Masculino , Acetilcolina/metabolismo , Cálcio/metabolismo , Relação Dose-Resposta a Droga
11.
Cell Signal ; 120: 111187, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38648894

RESUMO

Hypobaric hypoxia, commonly experienced at elevated altitudes, presents significant physiological challenges. Our investigation is centered on the impact of the bromodomain protein 4 (BRD4) under these conditions, especially its interaction with the Wnt/ß-Catenin pathway and resultant effects on glycolytic inflammation and intestinal barrier stability. By combining transcriptome sequencing with bioinformatics, we identified BRD4's key role in hypoxia-related intestinal anomalies. Clinical parameters of altitude sickness patients, including serum BRD4 levels, inflammatory markers, and barrier integrity metrics, were scrutinized. In vitro studies using CCD 841 CoN cells depicted expression changes in BRD4, Interleukin (IL)-1ß, IL-6, and ß-Catenin. Transepithelial electrical resistance (TEER) and FD4 analyses assessed barrier resilience. Hypoxia-induced mouse models, analyzed via H&E staining and Western blot, provided insights into barrier and protein alterations. Under hypoxic conditions, marked BRD4 expression variations emerged. Elevated serum BRD4 in patients coincided with intensified Wnt signaling, inflammation, and barrier deterioration. In vitro, findings showed hypoxia-induced upregulation of BRD4 and inflammatory markers but a decline in Occludin and ZO1, affecting barrier strength-effects mitigated by BRD4 inhibition. Mouse models echoed these patterns, linking BRD4 upregulation in hypoxia to barrier perturbations. Hypobaric hypoxia-induced BRD4 upregulation disrupts the Wnt/ß-Catenin signaling, sparking glycolysis-fueled inflammation and weakening intestinal tight junctions and barrier degradation.


Assuntos
Fatores de Transcrição , Via de Sinalização Wnt , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Doença da Altitude/metabolismo , beta Catenina/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo
12.
Appl Microbiol Biotechnol ; 108(1): 275, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530470

RESUMO

Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, ß-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, ß-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Hypocreales , Dimetilaliltranstransferase/metabolismo , Prenilação , Indóis/metabolismo , Diterpenos/metabolismo , Especificidade por Substrato
13.
Front Plant Sci ; 15: 1344733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516665

RESUMO

Introduction: Phosphorus (P), which plays a vital role in plant growth, is continually added to soil to maximize biomass production, leading to excessive P accumulation and water eutrophication. Results: In this study, a pot experiment using a subtropical tobacco-growing soil fertilized with four P levels-no P, low P, medium P, and high P-was conducted and rhizosphere and bulk soils were analyzed. Results: P addition significantly increased tobacco biomass production (except under low P input) and total soil P and available P content (P<0.05), whereas total nitrogen content decreased in the rhizosphere soils, although this was only significant with medium P application. P fertilization also significantly altered the bacterial communities of rhizosphere soils (P<0.05), but those of bulk soils were unchanged (P>0.05). Moreover, a significant difference was found between rhizosphere soils with low (LR) and high (HR) P inputs (P<0.05). Additionally, compared with rhizosphere soils with no P (CKR), Shannon diversity showed a declining trend, which was significant with LR and HR (P<0.05), whereas an increasing tendency was observed for Chao1 diversity except in LR (P>0.05). Functional prediction revealed that P application significantly decreased the total P and N metabolism of microorganisms in rhizosphere soils (P<0.05). Discussion: Collectively, our results indicate that maintaining sustainable agricultural ecosystems under surplus P conditions requires more attention to be directed toward motivating the potential of soil functional microbes in P cycling, rather than just through continual P input.

14.
Int Immunopharmacol ; 131: 111792, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38484667

RESUMO

Sepsis-associated encephalopathy (SAE) is a prevalent complication of sepsis, with hippocampal neuroinflammation playing a crucial role in SAE-induced cognitive impairment. Maresin1 (MaR1), a bioactive docosahexaenoic acid (DHA) metabolite, demonstrates comprehensive anti-inflammatory and neuroprotective attributes. Yet, its protective efficacy against SAE-induced cognitive decline remains unexplored. In this investigation, we implemented a rat SAE model via cecal ligation and puncture (CLP), while lipopolysaccharide (LPS) stimulation of HT22 cells simulated an in vitro SAE model; both models were pre-treated with MaR1. We evaluated rat learning and memory using a water maze, assessed hippocampal neuron damage via Nissl and FJC staining, and observed mitochondrial alterations through TEM. In vivo and in vitro assays gauged levels of Fe2+, MDA, GSH, and SOD. Additionally, Iba1 expression in the hippocampus was examined via immunofluorescence, while SLC7A11 and GPX4 protein expression levels were determined using western blot. Our findings indicated CLP-induced learning and memory impairment in rats, along with heightened ROS, Fe2+, and MDA levels in hippocampal neurons, diminished GSH and SOD levels, and down-regulated ferroptosis-related proteins (GPX4 and SLC7A11). Remarkably, MaR1 treatment attenuated these adverse effects. In LPS-stimulated HT22 cells, MaR1 lowered lipid ROS and bolstered mitochondrial membrane potential. Nonetheless, the ferroptosis inducer Erastin reversed MaR1's protective effects. Transwell experiments further showed MaR1's potential to inhibit microglia activation triggered by ferroptosis in HT22 cells. Consequently, MaR1 may mitigate hippocampal neuroinflammation via activating the SLC7A11/GPX4 ferroptosis signaling pathway, thus ameliorating SAE-related cognitive impairment.


Assuntos
Disfunção Cognitiva , Ferroptose , Encefalopatia Associada a Sepse , Sepse , Animais , Ratos , Cognição , Disfunção Cognitiva/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Hipocampo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio , Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/tratamento farmacológico , Transdução de Sinais , Superóxido Dismutase , Ácidos Docosa-Hexaenoicos/administração & dosagem
15.
J Am Chem Soc ; 146(12): 8206-8215, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412246

RESUMO

Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.

16.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350542

RESUMO

Colorectal cancer (CRC) has been the third most common malignancy and the second cause of cancer-related mortality. As the core of volume-sensitive chloride currents, leucine-rich repeat-containing 8A (LRRC8A) contributes to tumor progression but is not consistent, especially for whom the roles in colon carcinoma metastasis were not fully elucidated. Herein, LRRC8A proteins were found highly expressed in hematogenous metastasis from human colorectal cancer samples. The oxaliplatin-resistant HCT116 cells highly expressed LRRC8A, which was related to impaired proliferation and enhanced migration. The over-expressed LRRC8A slowed proliferation and increased migration ex vivo and in vivo. The elevated LRRC8A upregulated the focal adhesion, MAPK, AMPK, and chemokine signaling pathways via phosphorylation and dephosphorylation. Inhibition of LRRC8A impeded the TNF-α signaling cascade and TNF-α-induced migration. LRRC8A binding to PIP5K1B regulated the PIP2 formation, providing a platform for LRRC8A to mediate cell signaling transduction. Importantly, LRRC8A self-regulated its transcription via NF-κB1 and NF-κB2 pathways and the upregulation of NIK/NF-κB2/LRRC8A transcriptional axis was unfavorable for colon cancer patients. Collectively, our findings reveal that LRRC8A is a central mediator in mediating multiple signaling pathways to promote metastasis and targeting LRRC8A proteins could become a potential clinical biomarker-driven treatment strategy for colon cancer patients.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Humanos , Neoplasias do Colo/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167045, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38306800

RESUMO

Excessive hepatic lipid droplets (LDs) accumulation-induced lipid metabolism disorder contributes to the development of non-alcoholic fatty liver disease (NAFLD). Exercise is a promising therapeutic strategy for NAFLD. However, the mechanism by which exercise ameliorates NAFLD through regulating the catabolism of hepatic LDs remains unclear. In the present study, we investigated the effect of perilipin2 (PLIN2)-lysosomal acid lipase (LIPA) axis mediating exercise-triggered lipophagy in a high-fat diet (HFD)-induced NAFLD mouse model. Our results showed that exercise could reduce HFD-induced hepatic LDs accumulation and change the expression of lipolysis-related enzymes. Moreover, exercise upregulated the expression of microtubule associated protein 1 light chain 3 (LC3) and autophagy-related proteins, and downregulated sequestosome 1 (P62) expression and promoted autophagosomes formation. Interestingly, exercise downregulated PLIN2 expression, upregulated LIPA expression, and increased the activity of hepatic LIPA and serum levels of LIPA in the NAFLD mouse model. Further mechanistic studies demonstrated that adenosine monophosphate-activated protein kinase (AMPK) activator-5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) treatment significantly increased mRNA levels and protein expression of LIPA and LC3II and decreased levels of PLIN2 and P62 in palmitic acid (PA)-treated HepG2 cells. PLIN2 silencing and LIPA overexpression notably increased the mRNA level and protein expression of LC3II and decreased the mRNA level and protein expression of p62, respectively. In summary, our findings reveal novel insights into the effect of exercise on improving lipid droplet metabolism disorder in NAFLD. Enhancing the PLIN2-LIPA axis-mediated lipophagy may be one of the key mechanisms involved in NAFLD alleviation by exercise.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Gotículas Lipídicas/metabolismo , Autofagia , Modelos Animais de Doenças , Transtornos do Metabolismo dos Lipídeos/metabolismo , RNA Mensageiro/metabolismo
18.
Natl Sci Rev ; 11(1): nwae022, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38348130

RESUMO

Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.

19.
Technol Health Care ; 32(4): 2541-2552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38251080

RESUMO

BACKGROUND: The implementation of the rotation system in the Chinese medical industry has achieved significant results. OBJECTIVES: The present study aims to 1) explore the strengths, weaknesses, opportunities and challenges of rotational nursing department implementation and 2) provide references for developing nursing staff's competencies in leadership, performance evaluation, quality of care, communication in relationships and human resources. METHODS: A total of 16 rotational nursing department staff members from a tertiary tuberculosis specialist hospital in Beijing were interviewed, and the interview data were analysed using a strengths, weaknesses, opportunities and threats analysis and class analysis. RESULTS: The advantages of the rotational nursing department included: (1) stimulating the nursing staff's enthusiasm and creativity; (2) strengthening the communication and collaboration between departments; (3) improving the detailed management of nursing quality; and (4) enhancing the nursing staff's comprehensive abilities. The disadvantages included: (1) the design of the rotation programme focusing on practice; (2) a lack of personalisation; and (3) imperfect performance assessment of the rotating staff. Opportunities included: (1) deepening the connotation of nursing job management and (2) developing the construction of nursing discipline and the need for personal career development and value realisation. Threats included the lack of a sound rotation management model to draw on. CONCLUSION: A rotational nursing department is conducive to enhancing the competence of nursing staff in management positions and providing new ideas for hospitals to select and train nursing management talents. By taking full advantage of the benefits of vertical nursing management, designing personalised rotation training programmes, building a diversified learning and training platform and developing a positive performance incentive mechanism is recommended to fully engage the role of rotation in nursing management talent training.


Assuntos
Recursos Humanos de Enfermagem Hospitalar , Humanos , Recursos Humanos de Enfermagem Hospitalar/educação , Liderança , Competência Clínica , China , Feminino , Qualidade da Assistência à Saúde , Masculino
20.
Hypertens Res ; 47(2): 322-330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794243

RESUMO

This study aims to investigate the longitudinal association between objectively measured walking speed and hypertension and to explore the potential effect modification of obesity on this association in Chinese older adults. The data from the Chinese Health and Retirement Prospective Cohort Study (CHARLS) during 2011-2015 was used. Walking speed was assessed by measuring the participants' usual gait in a 2.5 m course, and it was divided into four groups according to the quartiles (Q1, Q2, Q3, and Q4). A total of 2733 participants ≥60 years old were eligible for the analyses. After a follow-up of 4 years, 26.9% occurred hypertension. An inverse association was observed between walking speed and the risk of hypertension. There was an interaction between body mass index (BMI) and walking speed for the hypertension risk (P = 0.010). the association of walking speed with hypertension was stronger in overweight and obese participants (Q2, OR: 0.54, 95%CI = 0.34-0.85, P = 0.009; Q3, OR: 0.69, 95%CI = 0.44-1.08, P = 0.106; Q4, OR: 0.62, 95%CI = 0.39-0.98, P = 0.039). However, this association was not significant among lean ones. A similar trend was observed for systolic and diastolic blood pressure. In conclusion, higher walking speed was longitudinally associated with a lower risk of hypertension in Chinese older adults, especially among overweight and obese participants.


Assuntos
Hipertensão , Velocidade de Caminhada , Humanos , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Sobrepeso , Hipertensão/epidemiologia , Obesidade , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...