Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Opt Mater ; 9(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34434691

RESUMO

The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.

2.
Light Sci Appl ; 9: 141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864116

RESUMO

Inspired by the "run-and-tumble" behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.

3.
Light Sci Appl ; 9: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194948

RESUMO

Optomechanics arises from the photon momentum and its exchange with low-dimensional objects. It is well known that optical radiation exerts pressure on objects, pushing them along the light path. However, optical pulling of an object against the light path is still a counter-intuitive phenomenon. Herein, we present a general concept of optical pulling-opto-thermoelectric pulling (OTEP)-where the optical heating of a light-absorbing particle using a simple plane wave can pull the particle itself against the light path. This irradiation orientation-directed pulling force imparts self-restoring behaviour to the particles, and three-dimensional (3D) trapping of single particles is achieved at an extremely low optical intensity of 10-2 mW µm-2. Moreover, the OTEP force can overcome the short trapping range of conventional optical tweezers and optically drive the particle flow up to a macroscopic distance. The concept of self-induced opto-thermomechanical coupling is paving the way towards freeform optofluidic technology and lab-on-a-chip devices.

4.
Mater Today (Kidlington) ; 25: 10-20, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31777449

RESUMO

Chirality is a ubiquitous phenomenon in the natural world. Many biomolecules without inversion symmetry such as amino acids and sugars are chiral molecules. Measuring and controlling molecular chirality at a high precision down to the atomic scale are highly desired in physics, chemistry, biology, and medicine, however, have remained challenging. Herein, we achieve all-optical reconfigurable chiral meta-molecules experimentally using metallic and dielectric colloidal particles as artificial atoms or building blocks to serve at least two purposes. One is that the on-demand meta-molecules with strongly enhanced optical chirality are well-suited as substrates for surface-enhanced chiroptical spectroscopy of chiral molecules and as active components in optofluidic and nanophotonic devices. The other is that the bottom-up-assembled colloidal meta-molecules provide microscopic models to better understand the origin of chirality in the actual atomic and molecular systems.

5.
ACS Nano ; 12(10): 10383-10392, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30226980

RESUMO

Optical manipulation of colloidal nanoparticles and molecules is significant in numerous fields. Opto-thermoelectric nanotweezers exploiting multiple coupling among light, heat, and electric fields enables the low-power optical trapping of nanoparticles on a plasmonic substrate. However, the management of light-to-heat conversion for the versatile and precise manipulation of nanoparticles is still elusive. Herein, we explore the opto-thermoelectric trapping at plasmonic antennas that serve as optothermal nanoradiators to achieve the low-power (∼0.08 mW/µm2) and deterministic manipulation of nanoparticles. Specifically, precise optical manipulation of nanoparticles is achieved via optical control of the subwavelength thermal hot spots. We employ a femtosecond laser beam to further improve the heat localization and the precise trapping of single ∼30 nm semiconductor quantum dots at the antennas where the plasmon-exciton coupling can be tuned. With its low-power, precise, and versatile particle control, the opto-thermoelectric manipulation can have applications in photonics, life sciences, and colloidal sciences.

6.
Acc Chem Res ; 51(6): 1465-1474, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29799720

RESUMO

Optical manipulation techniques are important in many fields. For instance, they enable bottom-up assembly of nanomaterials and high-resolution and in situ analysis of biological cells and molecules, providing opportunities for discovery of new materials, medical diagnostics, and nanomedicines. Traditional optical tweezers have their applications limited due to the use of rigorous optics and high optical power. New strategies have been established for low-power optical manipulation techniques. Optothermal manipulation, which exploits photon-phonon conversion and matter migration under a light-controlled temperature gradient, is one such emerging technique. Elucidation of the underlying physics of optothermo-matter interaction and rational engineering of optical environments are required to realize diverse optothermal manipulation functionalities. This Account covers the working principles, design concepts, and applications of a series of newly developed optothermal manipulation techniques, including bubble-pen lithography, opto-thermophoretic tweezers, opto-thermoelectric tweezers, optothermal assembly, and opto-thermoelectric printing. In bubble-pen lithography, optical heating of a plasmonic substrate generates microbubbles at the solid-liquid interface to print diverse colloidal particles on the substrates. Programmable bubble printing of semiconductor quantum dots on different substrates and haptic control of printing have also been achieved. The key to optothermal tweezers is the ability to deliver colloidal particles from cold to hot regions of a temperature gradient or a negative Soret effect. We explore different driving forces for the two types of optothermal tweezers. Opto-thermophoretic tweezers rely on an abnormal permittivity gradient built by structured solvent molecules in the electric double layer of colloidal particles and living cells in response to heat-induced entropy, and opto-thermoelectric tweezers exploit a thermophoresis-induced thermoelectric field for the low-power manipulation of small nanoparticles with minimum diameter around 20 nm. Furthermore, by incorporating depletion attraction into the optothermal tweezers system as particle-particle or particle-substrate binding force, we have achieved bottom-up assembly and reconfigurable optical printing of artificial colloidal matter. Beyond optothermal manipulation techniques in liquid environments, we also review recent progress of gas-phase optothermal manipulation based on photophoresis. Photophoretic trapping and transport of light-absorbing materials have been achieved through optical engineering to tune particle-molecule interactions during optical heating, and a novel optical trap display has been demonstrated. An improved understanding of the colloidal response to temperature gradients will surely facilitate further innovations in optothermal manipulation. With their low-power operation, simple optics, and diverse functionalities, optothermal manipulation techniques will find a wide range of applications in life sciences, colloidal science, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.


Assuntos
Células/química , Coloides/química , Nanopartículas Metálicas/química , Movimento (Física) , Óptica e Fotônica/métodos , Temperatura
7.
Nat Photonics ; 12(4): 195-201, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29785202

RESUMO

Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers (OTENT). Through optically heating a thermoplasmonic substrate, alight-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in-situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles, and tuneable working wavelength, OTENT will become a powerful tool in colloid science and nanotechnology.

8.
ACS Appl Nano Mater ; 1(8): 3998-4004, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31106296

RESUMO

Light-based manipulation of colloidal particles holds great promise in fabrication of functional devices. Construction of complex colloidal superstructures using traditional optical tweezers is limited by high operation power and strong heating effect. Herein, we demonstrate low-power opto-thermophoretic manipulation and construction of colloidal superstructures in photocurable hydrogels. By introducing cationic surfactants into a hydrogel solution under a light-directed temperature field, we create both thermoelectric fields and depletion attraction forces to control the suspended colloidal particles. The particles of various sizes and compositions are thus trapped and organized into various superstructures. Furthermore, the colloidal superstructures are immobilized and patterned onto solid-state substrates through UV-induced photopolymerization of the hydrogel. Our opto-thermophoretic technique will open up avenues for bottom-up assembly of colloidal materials and devices.

9.
J Phys Chem C Nanomater Interfaces ; 122(42): 24226-24234, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30766650

RESUMO

The response of colloidal particles to a light-controlled external temperature field can be harnessed for opto-thermophoretic manipulation of the particles. The thermoelectric effect is regarded as the driving force for thermophoretic trapping of particles at the light-irradiated hot region, which is thus limited to ionic liquids. Herein, we achieve opto-thermophoretic manipulation of colloidal particles in various non-ionic liquids, including water, ethanol, isopropyl alcohol and 1-butanol, and establish the physical mechanism of the manipulation at the molecular level. We reveal that the non-ionic driving force originates from a layered structure of solvent molecules at the particle-solvent interface, which is supported by molecular dynamics simulations. Furthermore, the effects of hydrophilicity, solvent type, and ionic strength on the layered interfacial structures and thus the trapping stability of particles are investigated, providing molecular-level insight into thermophoresis and guidance on interfacial engineering for optothermal manipulation.

10.
Sci Adv ; 3(9): e1700458, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913423

RESUMO

Colloidal matter exhibits unique collective behaviors beyond what occurs at single-nanoparticle and atomic scales. Treating colloidal particles as building blocks, researchers are exploiting new strategies to rationally organize colloidal particles into complex structures for new functions and devices. Despite tremendous progress in directed assembly and self-assembly, a truly versatile assembly technique without specific functionalization of the colloidal particles remains elusive. We develop a new strategy to assemble colloidal matter under a light-controlled temperature field, which can solve challenges in the existing assembly techniques. By adding an anionic surfactant (that is, cetyltrimethylammonium chloride), which serves as a surface charge source, a macro ion, and a micellar depletant, we generate a light-controlled thermoelectric field to manipulate colloidal atoms and a depletion attraction force to assemble the colloidal atoms into two-dimensional (2D) colloidal matter. The general applicability of this opto-thermophoretic assembly (OTA) strategy allows us to build colloidal matter of diverse colloidal sizes (from subwavelength scale to micrometer scale) and materials (polymeric, dielectric, and metallic colloids) with versatile configurations and tunable bonding strengths and lengths. We further demonstrate that the incorporation of the thermoelectric field into the optical radiation force can achieve 3D reconfiguration of the colloidal matter. The OTA strategy releases the rigorous design rules required in the existing assembly techniques and enriches the structural complexity in colloidal matter, which will open a new window of opportunities for basic research on matter organization, advanced material design, and applications.

11.
Lab Chip ; 17(18): 3061-3070, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28805878

RESUMO

Directed migration of particles and molecules in a temperature gradient field, which is known as thermophoresis or the Soret effect, is of fundamental importance for mass transfer in colloid science and life sciences. However, thermophoretic tweezers that enable versatile particle manipulation have remained elusive due to the complex underlying physical forces in thermophoresis and the lack of general thermophilic particles above room temperature. Herein, we exploit entropic response and permittivity gradient at the particle-solvent interface to optically generated thermal gradient to achieve the thermophoretic trapping and dynamic manipulation of charged particles over an optothermal-responsive substrate. Engineering the interfacial properties, i.e., the surface charge of particles and the ionic strength of the solvent, further enhances the trapping efficiency. Through the rational design of optothermal potential profiles and substrate geometries, we have achieved various tweezing functionalities, including particle assembly, alignment, rotation and guiding, as well as precise transport of single nanoparticles. Based on the general concept of entropic change of polarized molecules structured at the particle-solvent interlayer, the thermophoretic tweezers are applicable to various types of particles, biological cells, and molecules and a wide range of solvents.

12.
Chem Commun (Camb) ; 53(53): 7357-7360, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28569897

RESUMO

We have developed a new optical technique - opto-thermoelectric printing - to print colloidal particles with reconfigurable patterns on substrates via light-controlled thermoelectric fields.

13.
ACS Appl Mater Interfaces ; 9(19): 16725-16733, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28452214

RESUMO

Semiconductor quantum dots (QDs) feature excellent properties, such as high quantum efficiency, tunable emission frequency, and good fluorescence stability. Incorporation of QDs into new devices relies upon high-resolution and high-throughput patterning techniques. Herein, we report a new printing technique known as bubble printing (BP), which exploits a light-generated microbubble at the interface of colloidal QD solution and a substrate to directly write QDs into arbitrary patterns. With the uniform plasmonic hot spot distribution for high bubble stability and the optimum light-scanning parameters, we have achieved full-color QD printing with submicron resolution (650 nm), high throughput (scanning rate of ∼10-2 m/s), and high adhesion of the QDs to the substrates. The printing parameters can be optimized to further control the fluorescence properties of the patterned QDs, such as emission wavelength and lifetime. The patterning of QDs on flexible substrates further demonstrates the wide applicability of this new technique. Thus, BP technique addresses the barrier of achieving a widely applicable, high-throughput and user-friendly patterning technique in the submicrometer regime, along with simultaneous fluorescence modification capability.

14.
ACS Nano ; 11(3): 3147-3154, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28230355

RESUMO

Optical manipulation of biological cells and nanoparticles is significantly important in life sciences, early disease diagnosis, and nanomanufacturing. However, low-power and versatile all-optical manipulation has remained elusive. Herein, we have achieved light-directed versatile thermophoretic manipulation of biological cells at an optical power 100-1000 times lower than that of optical tweezers. By harnessing the permittivity gradient in the electric double layer of the charged surface of the cell membrane, we succeed at the low-power trapping of suspended biological cells within a light-controlled temperature gradient field. Furthermore, through dynamic control of optothermal potentials using a digital micromirror device, we have achieved arbitrary spatial arrangements of cells at a resolution of ∼100 nm and precise rotation of both single and assemblies of cells. Our thermophoretic tweezers will find applications in cellular biology, nanomedicine, and tissue engineering.


Assuntos
Escherichia coli/citologia , Pinças Ópticas , Temperatura , Membrana Celular , Simulação de Dinâmica Molecular
15.
Nano Lett ; 16(12): 7655-7663, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960522

RESUMO

Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.

16.
ACS Nano ; 10(10): 9659-9668, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27640212

RESUMO

Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/µm2) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/µm2. Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.

17.
Nano Lett ; 16(1): 701-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26678845

RESUMO

Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine.

18.
AIP Adv ; 5(9): 097161, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26421224

RESUMO

We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold nanodisk arrays embedded within the microfluidic channel. The device features fast response for dynamic operation, and the refractive index within the channel is tailorable. With these unique features, our "acousto-plasmofluidic" device can be useful in applications such as optical switches, modulators, filters, biosensors, and lab-on-a-chip systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...