Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Breed ; 44(5): 33, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694254

RESUMO

Hybrid seed production technology (SPT) is achieved through the utilization of a recessive nuclear male-sterile mutant transformed with a transgenic cassette comprising three essential components: the wild-type gene to restore the fertility of the male-sterile mutant, an α-amylase gene to disrupt transgenic pollen grains, and red fluorescence protein gene DsRed to distinguish the transgenic seeds from the nontransgenic male sterile seeds. In rice, we establish the pollen disruption system by introducing an amyloplast targeting signal peptide (ASP) at the N-terminus of maize α-amylase protein ZM-AA1ΔSP (ZM-AA1 with the N-terminal signal peptide removed). The ASP facilitates the transport of ZM-AA1ΔSP protein into amyloplast where it degrades starch, resulting in disruption of the pollen fertility. To obtain such signal peptides for rice, we searched the rice proteins homologous to the defined wheat amyloplast proteins followed by protein-protein interaction network predictions and targeting signal peptides prediction. These analyses enabled the identification of four candidate ASPs in rice, which were designated as ASP1, ASP2, ASP3, and ASP4, respectively. ASP1 and ASP2, when linked with ZM-AA1ΔSP, exhibited the capability to disrupt transgenic pollen grains, whereas ASP3 and ASP4 did not produce this effect. Interestingly, the localization experiments showed that ASP3 and ASP4 were able to target the proteins into chloroplast. The ASP1 and ASP2 sequences provide valuable tools for genetic engineering of the rice male-sterile system, which will contribute to the hybrid rice breeding and production. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01471-y.

2.
Front Plant Sci ; 13: 949897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212366

RESUMO

Plastid ribosomal proteins (PRPs) are necessary components for plastid ribosome biogenesis, playing essential roles in plastid development. The ribosomal protein L18 involved in the assemble of 5S rRNA and 23S rRNA, is vital for E. coli viability, but the functions of its homologs in plant plastid remain elusive. Here, we characterized the functions of the plant plastid ribosomal protein L18s (PRPL18s) in Arabidopsis and rice. AtPRPL18 was ubiquitously expressed in most of the plant tissues, but with higher expression levels in seedling shoots, leaves, and flowers. AtPRPL18 was localized in chloroplast. Genetic and cytological analyses revealed that a loss of function of AtPRPL18 resulted in embryo development arrest at globular stage. However, overexpression of AtPRPL18 did not show any visible phenotypical changes in Arabidopsis. The rice OsPRPL18 was localized in chloroplast. In contrast to AtPRPL18, knockout of OsPRPL18 did not affect embryo development, but led to an albino lethal phenotype at the seedling stage. Cytological analyses showed that chloroplast development was impaired in the osprpl18-1 mutant. Moreover, a loss-function of OsPRPL18 led to defects in plastid ribosome biogenesis and a serious reduction in the efficiency of plastid intron splicing. In all, these results suggested that PRPL18s play critical roles in plastid ribosome biogenesis, plastid intron splicing, and chloroplast development, and are essential for plant survival.

3.
J Integr Plant Biol ; 62(8): 1246-1263, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31965735

RESUMO

Large-scale production of male sterile seeds can be achieved by introducing a fertility-restoration gene linked with a pollen-killer gene into a recessive male sterile mutant. We attempted to construct this system in rice by using a late-stage pollen-specific (LSP) promoter driving the expression of maize α-amylase gene ZM-AA1. To obtain such promoters in rice, we conducted comparative RNA-seq analysis of mature pollen with meiosis anther, and compared this with the transcriptomic data of various tissues in the Rice Expression Database, resulting in 269 candidate LSP genes. Initial test of nine LSP genes showed that only the most active OsLSP3 promoter could drive ZM-AA1 to disrupt pollen. We then analyzed an additional 22 LSP genes and found 12 genes stronger than OsLSP3 in late-stage anthers. The promoters of OsLSP5 and OsLSP6 showing higher expression than OsLSP3 at stages 11 and 12 could drive ZM-AA1 to inactivate pollen, while the promoter of OsLSP4 showing higher expression at stage 12 only could not drive ZM-AA1 to disrupt pollen, suggesting that strong promoter activity at stage 11 was critical for pollen inactivation. The strong pollen-specific promoters identified in this study provided valuable tools for genetic engineering of rice male sterile system for hybrid rice production.


Assuntos
Oryza/genética , Pólen/genética , Regiões Promotoras Genéticas , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Especificidade de Órgãos/genética , Fenótipo , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Transcriptoma/genética
4.
J Integr Plant Biol ; 62(8): 1227-1245, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31833176

RESUMO

Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane-localized legume-lectin receptor kinase that we named OsLecRK-S.7. OsLecRK-S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK-S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376 , Ser378 , Thr386 , Thr403 , and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk-s.7 mutant plant overexpressing OsLecRK-S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK-S.7 was a key regulator of pollen development.


Assuntos
Lectinas/metabolismo , Oryza/enzimologia , Oryza/fisiologia , Pólen/enzimologia , Pólen/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Membrana Celular/enzimologia , Fertilidade , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Oryza/ultraestrutura , Fenótipo , Filogenia , Pólen/genética , Pólen/ultraestrutura , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...