Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896601

RESUMO

Anomaly detection tasks involving time-series signal processing have been important research topics for decades. In many real-world anomaly detection applications, no specific distributions fit the data, and the characteristics of anomalies are different. Under these circumstances, the detection algorithm requires excellent learning ability of the data features. Transformers, which apply the self-attention mechanism, have shown outstanding performances in modelling long-range dependencies. Although Transformer based models have good prediction performance, they may be influenced by noise and ignore some unusual details, which are significant for anomaly detection. In this paper, a novel temporal context fusion framework: Temporal Context Fusion Transformer (TCF-Trans), is proposed for anomaly detection tasks with applications to time series. The original feature transmitting structure in the decoder of Informer is replaced with the proposed feature fusion decoder to fully utilise the features extracted from shallow and deep decoder layers. This strategy prevents the decoder from missing unusual anomaly details while maintaining robustness from noises inside the data. Besides, we propose the temporal context fusion module to adaptively fuse the generated auxiliary predictions. Extensive experiments on public and collected transportation datasets validate that the proposed framework is effective for anomaly detection in time series. Additionally, the ablation study and a series of parameter sensitivity experiments show that the proposed method maintains high performance under various experimental settings.

2.
Bioresour Technol ; 343: 126099, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626766

RESUMO

The development and application of bioenergy and biofuels conversion technology can play a significant role for the production of renewable and sustainable energy sources in the future. However, the complexity of bioenergy systems and the limitations of human understanding make it difficult to build models based on experience or theory for accurate predictions. Recent developments in data science and machine learning (ML), can provide new opportunities. Accordingly, this critical review provides a deep insight into the application of ML in the bioenergy context. The latest advances in ML assisted bioenergy technology, including energy utilization of lignocellulosic biomass, microalgae cultivation, biofuels conversion and application, are reviewed in detail. The strengths and limitations of ML in bioenergy systems are comprehensively analysed. Moreover, we highlight the capabilities and potential of advanced ML methods when encountering multifarious tasks in the future prospects to advance a new generation of bioenergy and biofuels conversion technologies.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...