Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 453: 139671, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761740

RESUMO

Current technologies as correlation analysis, regression analysis and classification model, exhibited various limitations in the evaluation of soybean possessing potentials, including single, vague evaluation and failure of quantitative prediction, and thereby hindering more efficient and profitable soymilk industry. To solve this problem, 54 soybean cultivars and their corresponding soymilks were subjected to chemical, textural, and sensory analyses to obtain the soybean physicochemical nature (PN) and the soymilk profit and quality attribute (PQA) datasets. A deep-learning based model was established to quantitatively predict PQA data using PN data. Through 45 rounds of training with the stochastic gradient descent optimization, 9 remaining pairs of PN and PQA data were used for model validation. Results suggested that the overall prediction performance of the model showed significant improvements through iterative training, and the trained model eventually reached satisfying predictions (|relative error| ≤ 20%, standard deviation of relative error ≤ 40%) on 78% key soymilk PQAs. Future model training using big data may facilitate better prediction on soymilk odor qualities.


Assuntos
Aprendizado Profundo , Glycine max , Leite de Soja , Leite de Soja/química , Glycine max/química , Glycine max/crescimento & desenvolvimento , Paladar , Odorantes/análise , Humanos , Manipulação de Alimentos
2.
Int J Biol Macromol ; 263(Pt 2): 130423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428760

RESUMO

Corn starch with slow thickening property may facilitate more efficient heat transfer and safety of corn starch-thickened foods. Partial substitution of normal corn starch (NCS) with slow-pasting behavior of cow cockle starch (CCS) was hypothesized to impart binary starch blend with slow-thickening effect during hydrothermal heating. To test hypothesis, a series of starch blend dispersions (with weight ratios of CCS to NCS = 75:25, 50:50, 25:75) were prepared at various starch concentrations (6 %, 8 %, 10 %, and 12 %) and subjected to the Rapid Viscosity Analysis (RVA). RVA viscographs of starch blends were compared with that of NCS, suggesting that nearly all starch blends at various concentrations showed longer time span of pasting and lower pasting rate. Although CCS and NCS blend gels exhibited lower Young's modulus and hardness based on textural profile analysis, the sensory panels revealed that 6 % and 8 % starch blend gels (with weight ratio of CCS to NCS = 25:75) showed the mouthfeel analogous to NCS gel. These findings highlight a viable non-chemical modification strategy that enables binary blends of CCS and NCS as a novel gelling agent with slow-pasting property and may aid in safety and high-quality processing of hydrogel foods.


Assuntos
Cardiidae , Amido , Animais , Bovinos , Amido/química , Zea mays/química , Viscosidade , Hidrogéis
3.
J Nutr Biochem ; 119: 109401, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37276891

RESUMO

Type 2 diabetes mellitus (T2DM) is the most common type of diabetes globally and poses a major concern for human health. This study aimed to investigate the effects on T2DM of low-glycemic index (GI) potato biscuits with oat bran and inulin as functional additives. T2DM was induced in rats by streptozotocin (STZ) and a high-sugar and high-fat diet. The alleviation of T2DM by low-GI potato biscuits at different doses was evaluated based on the analysis of glycolipid levels, histological observations, inflammatory markers, and gut microbiota structure. Compared to wheat biscuits, low-GI potato biscuits resulted in lower postprandial blood glucose levels. After 8 weeks of intervention, fasting blood sugar levels were 16.9% lower in T2DM rats fed high-dose low-GI potato biscuits than in untreated T2DM rats. Moreover, the intervention with low-GI potato biscuits significantly alleviated T2DM-induced pathological damage, glucose and lipid metabolic disorders, and inflammation by reversing the levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, transforming growth factor-ß, interleukin-1ß, interleukin-6 and tumor necrosis factor-α. Moreover, the levels of short-chain fatty acids and gut microbiota structure in T2DM rats were significantly reversed. The abundance of beneficial bacteria (e.g., Bifidobacterium, Lachnoclostridium, Roseburia) in the gut of T2DM rats was significantly increased whereas the abundance of Escherichia-Shigella and Desulfovibrio decreased. The present study revealed that low-GI potato biscuits alleviated damages caused by high-sugar and high-fat diet- and STZ-induced T2DM in rats, as well as reversed disturbances in the gut microbiota. Thus, low-GI potato biscuits are potentially beneficial to T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Solanum tuberosum , Humanos , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Índice Glicêmico , Estreptozocina/efeitos adversos , Solanum tuberosum/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose , HDL-Colesterol , Glicemia/metabolismo
4.
Food Res Int ; 164: 112407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737988

RESUMO

Spoiled odors are a problem in thermally sterilized fermented soymilk. This study aims to clarify production conditions and key odorants of spoiled odors. The sensory evaluation showed that thermal sterilization caused a decrease in the sensory intensity of yogurt and fruity odors while significantly increasing undesirable aromas including beany, acidic, cooked-beans and spoiled odors. The spoiled odors increased with increasing acidity and heating temperatures. The strongest spoiled odor was observed in fermented soymilk at titratable acidity of 5.4 g/kg, sterilized at 90 °C. Apart from common volatiles that were inherent in soymilk and generated from lactic fermentation, 2-methyltetrahydrothiophen-3-one was found for the first time in soybean foods and was found to cause the spoiled odor. 44 volatiles found in thermally sterilized fermented soymilk were jointly formed its flavor wheel. This study provides important theoretical support for solving the problem of spoiled odor restricting the popularization of plant-based fermented soymilk.


Assuntos
Odorantes , Leite de Soja , Odorantes/análise , Glycine max , Temperatura , Iogurte
5.
Foods ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36673421

RESUMO

This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography-mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes.

6.
Nat Commun ; 13(1): 6636, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333290

RESUMO

Nonlinear depletion of fluorescence states by stimulated emission constitutes the basis of stimulated emission depletion (STED) microscopy. Despite significant efforts over the past decade, achieving super-resolution at low saturation intensities by STED remains a major technical challenge. By harnessing the surface quenching effect in NaGdF4:Yb/Tm nanocrystals, we report here high-efficiency emission depletion through surface migration. Using a dual-beam, continuous-wave laser manipulation scheme (975-nm excitation and 730-nm de-excitation), we achieved an emission depletion efficiency of over 95% and a low saturation intensity of 18.3 kW cm-2. Emission depletion by surface migration through gadolinium sublattices enables super-resolution imaging with sub-20 nm lateral resolution. Our approach circumvents the fundamental limitation of high-intensity STED microscopy, providing autofluorescence-free, re-excitation-background-free imaging with a saturation intensity over three orders of magnitude lower than conventional fluorophores. We also demonstrated super-resolution imaging of actin filaments in Hela cells labeled with 8-nm nanoparticles. Combined with the highly photostable lanthanide luminescence, surface-migration emission depletion (SMED) could provide a powerful mechanism for low-power, super-resolution imaging or biological tracking as well as super-resolved optical sensing/writing and lithography.


Assuntos
Corantes Fluorescentes , Nanopartículas , Humanos , Microscopia de Fluorescência/métodos , Células HeLa , Luminescência
7.
J Healthc Eng ; 2022: 8547906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35070244

RESUMO

With the acceleration of the aging process, there are more and more elderly patients with chronic heart failure. Chronic heart failure has severely affected the heart function and quality of life of the elderly. This article aims to study the further improvement of the heart function and the quality of life of elderly patients with chronic heart failure through exercise rehabilitation. In this paper, experimental analysis and comparative analysis are adopted, the experimental group and the control group are designed, the adaptive heart rate and breathing rate algorithm is adopted, the heart failure symptom assessment scale and the quality of life assessment tool are selected, and the two groups of different rehabilitation forms are compared. Data collection, sorting, and analysis of the patient's conditions are utilized. Through the use of exercise rehabilitation, the heart failure process will be slower and the recovery of heart strength will be faster than the control group. Before the experiment, the probability of shortness of breath in the two groups of patients with chronic heart failure symptoms was as high as 84.08%, and the symptom clusters were more serious; after the experiment, the SV and EF values after exercise rehabilitation were higher than those of the control group (p < 0.05). The quality of life in the realm, emotional realm, and other realms has been significantly improved. For elderly patients with chronic heart failure, reasonable exercise rehabilitation training can provide them with effective preventive measures and protective measures, improve the patients' heart function and quality of life, and play an important and key role.


Assuntos
Reabilitação Cardíaca , Insuficiência Cardíaca , Idoso , Doença Crônica , Terapia por Exercício , Insuficiência Cardíaca/diagnóstico , Humanos , Qualidade de Vida
8.
Carbohydr Polym ; 250: 116859, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049814

RESUMO

Fluorescence emissions of molecular rotors (MRs) are affected by local restrictions to molecular motion, and therefore it was considered that MRs can be used as structural probes of biopolymers. In this study, 9-(2-carboxy-2-cyanovinyl)-julolidine (CCVJ), a hydrophilic MR, was used to differentiate branched α-D-glucans, including amylopectin, phytoglycogen, and their ß-limit dextrins. CCVJ emissions of glucan dispersions were correlated with dispersion viscosities and glucan branch structures. In diluted glucan dispersions, CCVJ emission showed essentially linear correlation with glucan content. In concentrated glucan dispersions, CCVJ emission correlated with viscosity in a double-logarithmic linear pattern, with phytoglycogen showing much greater sensitivities than amylopectin. In the plots of CCVJ emission vs. molar amount of branch, phytoglycogen materials showed greater slopes than their amylopectin counterparts, suggesting evident effects of branch structure on the restrictions to CCVJ molecules. Overall, CCVJ has demonstrated its fluorescent sensitivity with glucans, showing strong potentials as a structural probe of biopolymers.


Assuntos
Amilopectina/química , Dextrinas/química , Corantes Fluorescentes/química , Glucanos/química , Nitrilas/química , Compostos Fitoquímicos/química , Polímeros/química , Quinolizinas/química , Interações Hidrofóbicas e Hidrofílicas , Viscosidade
9.
Small ; 15(43): e1904298, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31490613

RESUMO

Precise knowledge about optical and structural performance of individual rare earth (RE)-doped particles is extremely important for the optimization of luminescent particles and for fully exploiting their capability as multifunctional probes for interdisciplinary applications. In this work, optical and structural anisotropy of individual particles through RE-doped single fluoride microcrystals with controllable morphology is reported. Unique luminescent phenomena, for example, white light-emission from Pr3+ at single particle level and different photoluminescent spectra variation dependence on excitation polarization orientation at different excitation direction are observed upon excitation with a 980 nm linearly polarized laser. Based on the analysis of local site symmetry and electron cloud distribution of REs in hexagonal structure by density functional theory calculations, an exciting mechanism of excitation polarization response anisotropy is given for the first time, providing a guidance for emission polarization simultaneously. The structural anisotropy is presented in Raman spectra with obvious differing Raman curves, revealing the reason why there are differences between powder groups. Taking advantage of anisotropic crystals, potential applications in microscopic multi-information transportation are suggested for the optical and structural performance anisotropy from RE-doped fluoride single nano/microcrystals to ordered nano/microcrystal arrays, such as local rate probing in a flowing liquid.

10.
Nanoscale ; 11(11): 4959-4969, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30839016

RESUMO

In this study, we systematically investigate the decay characteristics of upconversion luminescence (UCL) under anti-Stokes excitation through numerical simulations based on rate-equation models. We find that a UCL decay profile generally involves contributions from the sensitizer's excited-state lifetime, energy transfer and cross-relaxation processes. It should thus be regarded as the overall temporal response of the whole upconversion system to the excitation function rather than the intrinsic lifetime of the luminescence emitting state. Only under certain conditions, such as when the effective lifetime of the sensitizer's excited state is significantly shorter than that of the UCL emitting state and of the absence of cross-relaxation processes involving the emitting energy level, the UCL decay time approaches the intrinsic lifetime of the emitting state. Subsequently, Stokes excitation is generally preferred in order to accurately quantify the intrinsic lifetime of the emitting state. However, possible cross-relaxation between doped ions at high doping levels can complicate the decay characteristics of the luminescence and even make the Stokes-excitation approach fail. A strong cross-relaxation process can also account for the power dependence of the decay characteristics of UCL.

11.
Nanoscale ; 11(4): 1563-1569, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644963

RESUMO

Multi-photon upconversion super-resolution microscopy is a recently proposed imaging modality, based on lanthanide-doped nanocrystals, which can emit visible emission upon low-intensity near-infrared excitation. This imaging modality exhibits many advantages, including increased imaging depth, high signal-to-noise ratio, low phototoxicity, and high photostability. However, two factors seriously restrict its scanning speed, sometimes even to an intolerable degree; the long lanthanide emission lifetime and the low brightness. For proper imaging, pixel dwell times of several milliseconds are often required. In this work, a facile strategy is proposed to overcome these two obstacles. By adopting a high sensitizer (Yb3+) doping strategy for upconversion nanocrystals, their emission intensity is greatly increased and their emission transients are significantly accelerated, without losing the emission depletion efficiency induced by the depletion laser. This enables the implementation of a very fast upconversion stimulated emission depletion super-resolution microscopy with a scanning speed of 10 µs per pixel. This work opens the possibility for upconversion super-resolution microscopy to capture vital biological activities in real time.

12.
Nanoscale ; 10(45): 21025-21030, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427028

RESUMO

We experimentally realized one-scan fluorescence emission difference nanoscopy (FED) by simultaneously imaging two different color emissions of NaYF4:Er3+@NaYF4@NaYF4:Yb3+/Tm3+ upconversion nanoparticles. Under the irradiation of two synchronized laser beams, a solid 940 nm beam and a hollow 808 nm beam, green emission of Er3+ and blue emission of Tm3+ can be orthogonally generated and collected. After simple subtraction, a resulting super-resolution image featuring 54 nm resolution was obtained. This strategy of excitation orthogonality would greatly improve the imaging speed and the applicability of FED nanoscopy.

13.
Nanoscale Res Lett ; 13(1): 272, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203265

RESUMO

Red-emitting carbonized polymer dots (CPDs) was prepared from p-phenylenediamine (p-PD) aqueous solution with the assistance of sulfuric acid (H2SO4), and the optical properties and bio-imaging application were studied in this paper. Compared with other strong acids-assisted systems, SA-CPDs (prepared from H2SO4-assisted system, average diameter is ~ 5 nm) is the brightest. The photoluminescence Quantum Yields (QYs) is 21.4% (in water), and the product yield is 16.5%. SA-CPDs aqueous solution emits at 600 nm when excited by the light from 300 to 580 nm. The emission wavelength is independent on the excitation wavelength. Formation energies of CPDs in two ways were calculated to show that longitudinal growth (forming polymers) is difficult, and the transverse growth (forming CPDs) is easy. In addition, the two-photon photoluminescence properties (emitting at 602 nm when excited by 850 nm femtosecond pulse laser) of SA-CPDs were also utilized in the experiments for HeLa cells staining and shown to have potential applications in bio-imaging.

14.
Opt Express ; 25(25): 30885-30894, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245768

RESUMO

Optical super-resolution microscopy has become a powerful technique to help scientists to monitor the sample of interest at nanoscale. Fluorescence emission difference (FED) microscopy, a very facile super-resolution method, does not require high depleting laser intensity and is independent on the species of agents, which makes FED microscopy possess great potential. However, to date, the biomarkers applied in FED microscopy usually suffer from a photo-bleaching problem. In this work, by introducing Er3+ activated upconverting nanoparticles with red-color emission and non-photobleaching properties, we demonstrate nonbleaching super-resolution imaging with FED microscopy. The dopant neodymium ions (Nd3+) can work as highly efficient sensitizing ions and enable near infrared 808-nm CW laser excitation of relatively low power, which would potentially reduce high intensity/short-wavelength light induced tissue damage. Both simulations and experiments on monodispersed NaYF4:Nd3+/Yb3+/Er3+@NaYF4:Nd3+ UCNPs also indicate that the easy saturation of the multiphoton properties of these UCNPs is beneficial to resolution enhancement in FED microscopy.

15.
Nanoscale ; 9(47): 18966-18976, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29181479

RESUMO

Nanohybrids can in most cases kill cancer cells more efficiently as compared with free photosensitizers. In this work, we constructed nanohybrid Ru1@CDs composed of carbon nanodots (CDs) and a phosphorescent Ru(ii) complex (Ru1) for one- and two-photon photodynamic therapy of cancer. The photosensitizer and imaging agent Ru1 is decorated onto the nanocarrier CDs covalently. Ru1 and Ru1@CDs can penetrate into cancer cells through an energy-dependent mechanism and endocytosis, respectively. Both Ru1 and Ru1@CDs are capable of lysosome-targeted phosphorescence imaging and photodamage under either 450 nm (one-photon) or 810 nm (two-photon) excitation. Conjugation with CDs can increase the cellular uptake efficacy of Ru1. Mechanism investigations show that both Ru1 and Ru1@CDs can induce apoptosis through generation of reactive oxygen species and cathepsin-initiated apoptotic signaling pathways. Upon two-photon excitation, Ru1@CDs show better penetrability, as well as higher inhibitory effects on cancer cell growth in both 2D cell and 3D multicellular tumor spheroid models. Our work provides an effective strategy for the construction of multifunctional imaging and phototherapeutic nanohybrids for the treatment of cancer.


Assuntos
Carbono , Lisossomos , Nanoestruturas , Fotoquimioterapia , Rutênio/química , Células A549 , Animais , Apoptose , Complexos de Coordenação , Embrião não Mamífero , Endocitose , Humanos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares , Peixe-Zebra
16.
Nat Commun ; 8(1): 1058, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051497

RESUMO

Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.


Assuntos
Microscopia/métodos , Nanopartículas , Cor , Citoesqueleto/ultraestrutura , Células HeLa , Humanos , Luminescência , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Sondas Moleculares , Túlio
17.
Annu Rev Food Sci Technol ; 8: 331-351, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245156

RESUMO

The overconsumption of dietary fat contributes to various chronic diseases, which encourages attempts to develop and consume low-fat foods. Simple fat reduction causes quality losses that impede the acceptance of foods. Fat replacers are utilized to minimize the quality deterioration after fat reduction or removal to achieve low-calorie, low-fat claims. In this review, the forms of fats and their functions in contributing to food textural and sensory qualities are discussed in various food systems. The connections between fat reduction and quality loss are described in order to clarify the rationales of fat replacement. Carbohydrate fat replacers usually have low calorie density and provide gelling, thickening, stabilizing, and other texture-modifying properties. In this review, carbohydrates, including starches, maltodextrins, polydextrose, gums, and fibers, are discussed with regard to their interactions with other components in foods as well as their performances as fat replacers in various systems.


Assuntos
Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Tecnologia de Alimentos/métodos , Qualidade dos Alimentos , Humanos
18.
Food Chem ; 209: 50-6, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27173533

RESUMO

This study focused on the effect of high-temperature pressure cooking on the sensory quality of soymilk. Soymilk was prepared by high-temperature pressure cooking (105-125°C and 0.12-0.235MPa) and traditional cooking (97°C and 0.1MPa). The size distribution and composition of protein particles and the rheological properties of soymilk were compared. Results showed that the content of protein particles and the average size of soymilk particles were higher in high-temperature pressure cooking than in traditional cooking (p<0.05). High-temperature pressure cooking affected soymilk protein denaturation and favored protein aggregation. Similar to traditional soymilk, soymilk cooked at 115°C was categorized as a Newtonian fluid but was found with increased viscosity in the rheological test. Soymilk cooked at 115°C for 10min exhibited a homogeneous, smooth, and creamy texture with a high acceptability in the sensory test.


Assuntos
Culinária/métodos , Temperatura Alta , Proteínas de Plantas/química , Leite de Soja/química , Humanos , Pressão , Viscosidade
19.
Food Chem ; 151: 532-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24423567

RESUMO

Soy paste, a fermented soybean product, is widely used for flavouring in East and Southeast Asian countries. The characteristic aroma of soy paste is important throughout its shelf life. This study extracted volatile compounds via headspace solid-phase microextraction and conducted a quantitative analysis of 15 key volatile compounds using gas chromatography and gas chromatography-mass spectrum analysis. Changes in aroma content during storage time were analyzed using an acceleration model (40 °C, 28 days). In the 28 days of storage, results showed that among key soy paste volatile compounds, alcohol and aldehyde contents decreased by 35% and 26%, respectively. By contrast, acid, ester, and heterocycle contents increased by 130%, 242%, and 15%, respectively. The overall odour type transformed from a floral to a roasting aroma. According to sample clustering in the principal component analysis, the storage life of soy paste could be divided into three periods. These three periods represent the floral, roasting, and pungent aroma types of soy paste.


Assuntos
Odorantes/análise , Análise de Componente Principal , Olfato , Alimentos de Soja/análise , Ácidos/análise , Álcoois/análise , Aldeídos/análise , Ésteres/análise , Fermentação , Armazenamento de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...