Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 866: 161421, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621491

RESUMO

Understanding the spatial variability of soil organic matter (SOM), soil total nitrogen (STN), soil total phosphorus (STP), and soil total potassium (STK) is important to support site-specific agronomic management, food production, and climate change adaptation. High-resolution remote sensing imageries have emerged as an innovative solution to investigate the spatial variation in agricultural soils with machine learning (ML) algorithms. However, the predictive power of the individual and combined effects of Sentinel-1 (S1) synthetic aperture radar (SAR) and Sentinel-2 (S2) multispectral images for mapping soil properties, especially STN, STP, and STK, have rarely been investigated. Moreover, single ML model may achieve unstable performance for predicting multiple soil properties due to strong spatial heterogeneity. This study explored the combine use of S1, S2, and DEM derivatives to map SOM, STN, STP, and STK content of a sloped cropland of northeastern China. A two-step method with a weighted sum of four ML models was proposed to improve the accuracy and robustness in predicting multiple soil properties. Our results showed that single ML model has various performance in predicting the four soil properties. The optimal ML models could explain approximately 56 %, 53 %, 56 % and 37 % of the variability of SOM, STN, STP, and STK, respectively. Using the weights estimated through a 10-fold cross-validation procedure, the two-step ensemble learning model was retrained and showed more robust performance than the four ML models, in which the prediction accuracy was improved by 2.38 %, 1.40 %, 3.52 %, and 3.29 % for SOM, STN, STP, and STK, respectively. Our results also showed that the optical S2 derived features, especially the two S2 short-wave infrared bands, enhanced vegetation index, and soil adjusted vegetation index, were more important for soil property prediction than S1 data and DEM derivatives. Compared with individual sensor, a combination of S1 and S2 data yielded more accurate predictions of STN and STP but not for SOM and STK. The results of this study highlight the potential of high-resolution S1 and S2 data and the two-step method for soil property prediction at farmland scale.

2.
J Acoust Soc Am ; 144(4): EL255, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30404495

RESUMO

Composite honeycomb sandwich panels have been adopted in a wide range of applications owing to their excellent mechanical properties. This paper demonstrates a design of a composite honeycomb metasurface panel that can achieve 90% sound absorption from 600 to 1000 Hz with a thickness less than 30 mm. The panel is comprised of periodically and horizontally arranged honeycomb "supercells" which consist of unit cells of different geometric parameters (pore size). Two different analytical models (Helmholtz resonator model and micro-perforated panel model) are used to calculate the sound absorption of the panel, and they are further validated by a numerical model. The relatively broadband sound absorption is found to be attributed to the coupling between unit cells, which is illustrated by both the complex frequency plane theory and the calculated sound intensity field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...