Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35888886

RESUMO

Thin-film microscale light-emitting diodes (LEDs) are efficient light sources and their integrated applications offer robust capabilities and potential strategies in biomedical science. By leveraging innovations in the design of optoelectronic semiconductor structures, advanced fabrication techniques, biocompatible encapsulation, remote control circuits, wireless power supply strategies, etc., these emerging applications provide implantable probes that differ from conventional tethering techniques such as optical fibers. This review introduces the recent advancements of thin-film microscale LEDs for biomedical applications, covering the device lift-off and transfer printing fabrication processes and the representative biomedical applications for light stimulation, therapy, and photometric biosensing. Wireless power delivery systems have been outlined and discussed to facilitate the operation of implantable probes. With such wireless, battery-free, and minimally invasive implantable light-source probes, these biomedical applications offer excellent opportunities and instruments for both biomedical sciences research and clinical diagnosis and therapy.

2.
Light Sci Appl ; 11(1): 130, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525849

RESUMO

Thermometric detectors are crucial in evaluating the condition of target objects spanning from environments to the human body. Optical-based thermal sensing tools have received extensive attention, in which the photon upconversion process with low autofluorescence and high tissue penetration depth is considered as a competent method for temperature monitoring, particularly in biomedical fields. Here, we present an optoelectronic thermometer via infrared-to-visible upconversion, accomplished by integrated light receiving and emission devices. Fully fabricated thin-film, microscale devices present temperature-dependent light emission with an intensity change of 1.5% °C-1 and a spectral shift of 0.18 nm °C-1. The sensing mechanism is systematically characterized and ascribed to temperature dependent optoelectronic properties of the semiconductor band structure and the circuit operation condition. Patterned device arrays showcase the capability for spatially resolved temperature mapping. Finally, in vitro and in vivo experiments implemented with integrated fiber-optic sensors demonstrate real-time thermal detection of dynamic human activity and in the deep brain of animals, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...