Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
6.
J Mol Graph Model ; 110: 108069, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773872

RESUMO

Chiral organophosphorus agents are distributed ubiquitously in the environment, but the neuroactivity of these asymmetric chemicals to humans remains uncertain. This scenario was to explore the stereoselective neurobiological response of human acetylcholinesterase (AChE) to chiral pyraclofos at the enantiomeric scale, and then decipher the microscopic basis of enantioselective neurotoxicity of pyraclofos enantiomers. The results indicated that (R)-/(S)-pyraclofos can form the bioconjugates with AChE with a stoichiometric ratio of 1:1, but the neuronal affinity of (R)-pyraclofos (K = 6.31 × 104 M-1) with AChE was larger than that of (S)-pyraclofos (K = 1.86 × 104 M-1), and significant enantioselectivity was existed in the biochemical reaction. The modes of neurobiological action revealed that pyraclofos enantiomers were situated at the substrate binding domain, and the strength of the overall noncovalent bonds between (S)-pyraclofos and the residues was weaker than that of (R)-pyraclofos, resulting in the high inhibitory effect of (R)-pyraclofos toward the activity of AChE. Dynamic enantioselective biointeractions illustrated that the intervention of inherent conformational flexibility in the AChE-(R)-pyraclofos was greater than that of the AChE-(S)-pyraclofos, which arises from the big spatial displacement and the conformational flip of the binding domain composed of the residues Thr-64~Asn-89, Gly-122~Asp-134, and Thr-436~Tyr-449. Energy decomposition exhibited that the Gibbs free energies of the AChE-(R)-/(S)-pyraclofos were ΔG° = ï¼37.4/-30.2 kJ mol-1, respectively, and the disparity comes from the electrostatic energy during the stereoselective neurochemical reactions. Quantitative conformational analysis further confirmed the atomic-scale computational chemistry conclusions, and the perturbation of (S)-pyraclofos on the AChE's ordered conformation was lower than that of (R)-pyraclofos, which is germane to the interaction energies of the crucial residues, e.g. Tyr-124, Tyr-337, Asp-74, Trp-86, and Tyr-119. Evidently, this attempt will contribute mechanistic information to uncovering the neurobiological effects of chiral organophosphates on the body.


Assuntos
Acetilcolinesterase , Simulação de Dinâmica Molecular , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase , Humanos , Simulação de Acoplamento Molecular , Organotiofosfatos , Análise Espectral , Estereoisomerismo
7.
J Int Med Res ; 48(6): 300060520925996, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529870

RESUMO

OBJECTIVE: Disulfiram is commonly used for alcohol abuse; however, recent studies have revealed its potential as an anti-cancer treatment. This study investigated the effects of disulfiram on gastric cancer and its underlying mechanisms of action. METHODS: The gastric cancer cell lines MKN-45 and SGC-7901 were used for all experiments. Cell proliferation was investigated using cell counting kit-8, cell migration and invasion were examined using Transwell assays, the proliferation and metastasis related proteins PCNA and MMP-2, respectively, were detected by ELISA. To explore the underlying molecular mechanisms, we also examined levels of proteins involved in the Wnt and NF-κB pathways by ELISA. RESULTS: Disulfiram significantly inhibited the proliferation, migration, and invasion of gastric cancer cells and decreased PCNA and MMP-2 levels. Additionally, disulfiram-treated MKN-45 and SGC-7901 cells showed reduced expression of Wnt, ß-catenin, and NF-κB. CONCLUSION: Disulfiram regulates the Wnt and NF-κB pathways, and thus could be a potential treatment for managing gastric cancer.


Assuntos
Dissulfiram/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Dissulfiram/uso terapêutico , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/efeitos dos fármacos
8.
Chemosphere ; 255: 127007, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416396

RESUMO

Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; ß-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.


Assuntos
Acetilcolinesterase/química , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Síndromes Neurotóxicas/etiologia , Compostos Organotiofosforados/química , Compostos Organotiofosforados/toxicidade , Dicroísmo Circular , Humanos , Modelos Teóricos , Simulação de Dinâmica Molecular , Fenômenos Físicos , Estrutura Secundária de Proteína , Estereoisomerismo
9.
Toxicology ; 438: 152446, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32278049

RESUMO

Chiral pollutants are widely distributed in the environment; however, the enantioselective toxic effects of these chemicals have still not fully been clarified. Using wet experiments and computational toxicology, this story was to explore the static and dynamic toxic reactions between chiral diclofop-methyl and target protein at the enantiomeric level, and further unveil the microscopic mechanism of enantioselective toxicity of chiral pesticide. Steady-state and time-resolved results indicated that both (R)-/(S)-enantiomers can form the stable toxic conjugates with target protein and the bioaffinities were 1.156 × 104 M-1/1.734 × 104 M-1, respectively, and significant enantioselectivity was occurred in the reaction. Results of the modes of toxic action revealed that diclofop-methyl enantiomers located in the subdomain IIA, and the strength of important noncovalent interactions between (S)-diclofop-methyl and the residues was greater than that of (R)-diclofop-methyl. The Gibbs free energies of the chiral reactions were -26.89/-29.40 kJ mol-1 and -25.79/-30.08 kJ mol-1, respectively, which was consistent with the outcomes of photochemistry and site-specific competitive assay. Dynamic enantioselective processes explained that the impact of intrinsic protein conformational flexibility on the toxic reaction of (R)-diclofop-methyl was lower than that of (S)-diclofop-methyl, which originates from the conformational changes and spatial displacement of the four loop regions (i.e. h6↔h7, h1↔h2, h5↔h6, and h8↔h9). The quantitative data of circular dichroism spectra confirmed such results. Energy decomposition displayed that the electrostatic energy of the target protein-(S)-diclofop-methyl system (-25.86 kJ mol-1) was higher than that of the target protein-(R)-diclofop-methyl complex (-18.21 kJ mol-1). Some crucial residues such as Lys-195, Lys-199, Ser-202, and Trp-214 have been shown to be of different importance for the enantioselective toxicity of chiral diclofop-methyl. Obviously this scenario will contribute mechanistic clues to assessing the potential hazards of chiral environmental pollutants to the body.


Assuntos
Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Praguicidas/toxicidade , Albumina Sérica Humana/metabolismo , Animais , Sítios de Ligação , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/metabolismo , Humanos , Simulação de Acoplamento Molecular , Praguicidas/química , Praguicidas/metabolismo , Ligação Proteica , Domínios Proteicos , Medição de Risco , Albumina Sérica Humana/química , Estereoisomerismo , Relação Estrutura-Atividade
10.
Chemosphere ; 235: 1030-1040, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31561292

RESUMO

Organic pesticides are one of the main environmental pollutants, and how to reduce their environmental risks is an important issue. In this contribution, we disclose the molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides using site-directed mutagenesis and molecular modeling and then construct an effective screening model. The results indicated that the target-site mutation (Trp-1999-Leu) in acetyl-coenzyme A carboxylase (ACCase) can affect the effectiveness of the pesticides (clodinafop, fenoxaprop, cyhalofop, and metamifop), and the plant resistance to fenoxaprop, clodinafop, cyhalofop, and metamifop was found to be 564, 19.5, 10, and 0.19 times, respectively. The established computational models (i.e. wild-type/mutant ACCase models) could be used for rational screening and evaluation of the resistance to pesticides. The resistance induced by target gene mutation can markedly reduce the bioreactivity of the ACCase-clodinafop/fenoxaprop adducts, and the magnitudes are 10 and 102, respectively. Such event will seriously aggravate environmental pollution. However, the biological issue has no distinct effect on cyhalofop (RI=10), and meanwhile it may markedly increase the bioefficacy of metamifop (RI=0.19). We could selectively adopt the two chemicals so as to decrease the residual pesticides in the environment. Significantly, research findings from the computational screening models were found to be negatively correlated with the resistance level derived from the bioassay testing, suggesting that the screening models can be used to guide the usage of pesticides. Obviously, this story may shed novel insight on the reduction of environmental risks of pesticides and other organic pollutants.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Biologia Computacional/métodos , Resistência a Herbicidas/genética , Praguicidas/toxicidade , Proteínas de Plantas/antagonistas & inibidores , Poaceae/crescimento & desenvolvimento , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Anilidas/toxicidade , Benzoxazóis/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/enzimologia , Propionatos/toxicidade , Conformação Proteica , Piridinas/toxicidade , Estados Unidos
11.
Toxicol Lett ; 314: 124-132, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31362050

RESUMO

Organophosphates are chemical pollutants that are existed widely in the environment, but the reactions of these agents with blood proteins are still not fully clarified. The current story was to analyze the static and dynamic interactions between human serum albumin (HSA) and phenthoate and then uncover the impact of the conjugations on the acetylcholinesterase (AChE) activity at the microscopic scale. Experimental results revealed clearly that the bioconjugate of the HSA-phenthoate was yielded and the conformation of HSA can produce autoregulation during the reaction. Dynamic reaction processes suggested that the conformational flexibility of the specific protein domain was changed significantly in equilibrium, and the electrostatic interaction energy played a major role in total energy of the biosystems, which matches the results of wet experiment and molecular docking. We also found that the modes of homologous proteins-phenthoate have obvious distinctions, and this point is related closely to the local dynamic flexibility of biomolecular structures. Additionally, the degree of bioconjugation of the HSA-phenthoate is positively associated with the enzymatic activity of target AChE, which may be attributed to the competitive reactions between HSA and AChE. Evidently, this scenario could provide useful molecular information for the systematic exploration of the toxicokinetics of organophosphorus compounds.


Assuntos
Inibidores da Colinesterase/sangue , Inseticidas/sangue , Modelos Biológicos , Simulação de Acoplamento Molecular , Compostos Organotiofosforados/sangue , Albumina Sérica Humana/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Sítios de Ligação , Ligação Competitiva , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Humanos , Inseticidas/química , Inseticidas/toxicidade , Compostos Organotiofosforados/química , Compostos Organotiofosforados/toxicidade , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Albumina Sérica Humana/química
12.
Molecules ; 23(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424524

RESUMO

Flubendiamide, a ryanoid class insecticide, is widely used in agriculture. Several insecticides have been reported to promote adipogenesis. However, the potential influence of flubendiamide on adipogenesis is largely unknown. The current study was therefore to determine the effects of flubendiamide on adipogenesis utilizing the 3T3-L1 adipocytes model. Flubendiamide treatment not only enhanced triglyceride content in 3T3-L1 adipocytes, but also increased the expression of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ, two important regulators of adipocyte differentiation. Moreover, the expression of the most important regulator of lipogenesis, acetyl coenzyme A carboxylase, was also increased after flubendiamide treatment. Further study revealed that 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or A769662, two Adenosine 5'-monophosphate (AMP)-activated protein kinase α activators, subverted effects of flubendiamide on enhanced adipogenesis. Together, these results suggest that flubendiamide promotes adipogenesis via an AMPKα-mediated pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Benzamidas/farmacologia , Sulfonas/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Triglicerídeos/metabolismo
13.
J Photochem Photobiol B ; 171: 75-84, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28482223

RESUMO

Phentolamine is one of the most representative nonselective α-adrenoreceptor blocking agents, which have been proved to be owned various pharmacological actions. Unfortunately, whether erythrocytes in the veins intervene in biological behaviors of such drug are largely obscured. With the aid of multiple biophysical techniques, this scenario was to detailed explore the potential biorecognition between phentolamine and the hemeprotein in the cytosol of erythrocytes, and the influences of dynamic characters of protein during the bioreaction. Steady-state and time-resolved fluorescence data manifested that the biomolecular recognition of phentolamine by hemeprotein was processed through the biopolymer-drug adduct with a moderate strength of 104M-1. Such procedure causes a reduction in fluorescence intensity of the aromatic tryptophan (Trp) residues, and the R-T transition of the globular protein occurred concurrently. Circular dichroism demonstrated the conclusions of fluorescence essays, viz. biorecognition can induce fairly structural transformation (self-regulation) of protein conformation. Furthermore, one could find that a specific domain for phentolamine is located at the polypeptide chains α1ß2 interface, and hydrogen bonds, π-conjugated and hydrophobic effects are discovered to be held the lowest energy state of the biomacromolecule-drug biosystem, which overtly matches the outcomes of wet experiments. Meanwhile, several crucial residues such as Trp-37 and Arg-40 were confirmed to have directly noncovalent interactions with phentolamine, and the effect of the heme group on the biomolecule-drug recognition is minimal. Further analyses of molecular dynamics simulation supported that the inherent protein flexibility may notably elicit alterations in some key noncovalent bonds between biomacromolecule and drug during the dynamic biointeraction, which might primarily be attributed to the torsion of drug structure and the conformational changes of essential residues. Undoubtedly, this research will not only help to thoroughly unearth the pharmacological profiles of phentolamine, but to elaborate the impacts of the intrinsic features (i.e. dynamics and flexibility) of critically cellular proteins on the biological conducts of active α-adrenergic blockers.


Assuntos
Hemeproteínas/metabolismo , Fentolamina/toxicidade , Sítios de Ligação , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemeproteínas/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Triptofano/química
14.
Phys Chem Chem Phys ; 18(17): 11959-71, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27095486

RESUMO

The current work explores the biomolecular recognition of a series of flavonols by a protein and then uncovers the influences of the structural features of flavonols and the protein's own characteristics, e.g. the dynamics and flexibility, on the bioavailability of flavonols by using the pivotal biomacromolecule hemoglobin as a model. The experimental results revealed that flavonol may lead to a notable decrease in the steady-state fluorescence intensity of the ß-37 Trp residue, and in the meantime the R-T transition of the protein transpired. Such noncovalent recognition forms the ground-state adduct, with an association intensity of 3.991 × 10(4) M(-1) in the reaction process, which has already been authenticated by the detailed analysis of time-resolved fluorescence and UV/vis absorption spectra. Furthermore, flavonol can form hydrogen bonds and π-conjugation effects with several amino acid residues on the polypeptide chain, for example, Trp-37, Arg-40, Asp-99 and Asn-102, and this event would induce self-regulation of the compact, regular conformation of the protein to a certain extent, which explicitly corroborates the results of circular dichroism. According to the study of molecular docking and structure-activity relationships, we could see that the recognition capacities of the protein-flavonols are inversely interrelated with the C log P values of the flavonol molecules. Moreover, the properties of the substituents in the structural B-ring unit of flavonols, i.e. polarity, position and number, will also prominently affect the degree of affinity and bioavailability of the protein-flavonol complexes. The analytical results of molecular dynamics (MD) simulation testified that the discussions of the structure-activity relationships are entirely logical, and the conformations of the amino acid residues forming noncovalent interactions tend to be stable in the MD simulation, as further elucidated from the dynamics data. Plainly, molecular recognition of the protein-flavonols might noticeably cause relatively large changes in protein flexibility, and then manifest different recognition strengths and corresponding biological activities. This issue will be carefully validated by the interpretation of root-mean-square fluctuation.


Assuntos
Flavonóis/metabolismo , Hemoglobinas/metabolismo , Sítios de Ligação , Flavonóis/química , Hemoglobinas/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
15.
J Photochem Photobiol B ; 158: 69-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26950891

RESUMO

Methylene blue is a phenothiazine agent, that possesses a diversity of biomedical and biological therapeutic purpose, and it has also become the lead compound for the exploitation of other pharmaceuticals such as chlorpromazine and the tricyclic antidepressants. However, the U.S. Food and Drug Administration has acquired cases of detrimental effects of methylene blue toxicities such as hemolytic anemia, methemoglobinemia and phototoxicity. In this work, the molecular recognition of methylene blue by two globular proteins, hemoglobin and lysozyme was characterized by employing fluorescence, circular dichroism (CD) along with molecular modeling at the molecular scale. The recognition of methylene blue with proteins appears fluorescence quenching via static type, this phenomenon does cohere with time-resolved fluorescence lifetime decay that nonfluorescent protein-drug conjugate formation has a strength of 10(4)M(-1), and the primary noncovalent bonds, that is hydrogen bonds, π-conjugated effects and hydrophobic interactions were operated and remained adduct stable. Meantime, the results of far-UV CD and synchronous fluorescence suggest that the α-helix of hemoglobin/lysozyme decreases from 78.2%/34.7% (free) to 58.7%/23.8% (complex), this elucidation agrees well with the elaborate description of three-dimensional fluorescence showing the polypeptide chain of proteins partially destabilized upon conjugation with methylene blue. Furthermore, both extrinsic fluorescent indicator and molecular modeling clearly exhibit methylene blue is situated within the cavity constituted by α1, ß2 and α2 subunits of hemoglobin, while it was located at the deep fissure on the lysozyme surface and Trp-62 and Trp-63 residues are nearby. With the aid of computational analyses and combining the wet experiments, it can evidently be found that the recognition ability of proteins for methylene blue is patterned upon the following sequence: lysozyme

Assuntos
Azul de Metileno/química , Fenotiazinas/química , Proteínas/metabolismo , Dicroísmo Circular , Humanos , Fotoquímica , Conformação Proteica , Proteínas/química , Soluções
16.
J Photochem Photobiol B ; 148: 21-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25863440

RESUMO

Phenothiazine and its derivatives are the most effective antipsychotic drugs. They have been used in the treatment of serious mental and emotional symptoms including bipolar disorder, organic psychoses, psychotic depression and schizophrenia. However, these drugs cause serious side effects such as akathisia, hyperprolactinaemia and neuroleptic malignant syndrome. In this work we investigated the molecular recognition of two typical phenothiazine compounds, phenosafranin and safranin O by the most pivotal heme protein hemoglobin using steady state and time-resolved fluorescence, extrinsic 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescent probe, circular dichroism (CD) along with computational modeling. Results show phenothiazines complex with protein via formation of adducts at 298 K with moderate strengths of 3.555×10(4) M(-1) and 2.567×10(4) M(-1) for the hemoglobin-phenosafranin and hemoglobin-safranin O, respectively. We also found phenothiazines were effectors at the protein allosteric site, which affects the allosteric equilibrium. Further, time-resolved fluorescence and hydrophobic ANS experiments showed the static mechanism is dominated for the shrinkage in the fluorescence intensity of ß-37 Trp residue at the α1ß2 interface. The stoichiometric proportion of the protein-drug adduct is 1:1, as derived from Job's plot. Several crucial noncovalent bonds, including hydrogen bonds, π-π stacking and hydrophobic interactions played a major role in stabilizing the noncovalent conjugates. Based on three-dimensional fluorescence, we concluded that the conformation of hemoglobin is partially destabilized after recognition with phenothiazines. These alterations were confirmed by far-UV CD spectra that showed the α-helix of protein decreased from 78.3% in free hemoglobin to 62.8% and 64.8% in hemoglobin-phenosafranin and hemoglobin-safranin O, respectively. Computer-aided molecular docking was consistent, indicating that both phenothiazines are situated within the pocket composed of α1 and ß2 subunits. Affinity of hemoglobin to phenosafranin is superior compared with safranin O. This difference may be explained by the methyl group substituent on A- and C-rings, and by the different molecular volume between phenosafranin and safranin O. Our data provides further explanation of the overall pharmacokinetics of phenothiazines and sheds light on the allosteric regulation of heme proteins.


Assuntos
Antipsicóticos/química , Hemoglobinas/metabolismo , Fenotiazinas/química , Naftalenossulfonato de Anilina/química , Antipsicóticos/metabolismo , Sítios de Ligação , Dicroísmo Circular , Corantes Fluorescentes/química , Hemoglobinas/química , Simulação de Acoplamento Molecular , Fenazinas/química , Fenazinas/metabolismo , Fenotiazinas/metabolismo , Processos Fotoquímicos , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
17.
Mol Biosyst ; 10(10): 2509-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016933

RESUMO

In the present work, the molecular recognition of the oldest active amphenicols by the most popular renal carrier, lysozyme, was deciphered by using fluorescence, circular dichroism (CD) and molecular modeling at the molecular scale. Steady state fluorescence data showed that the recognition of amphenicol by lysozyme yields a static type of fluorescence quenching. This corroborates time-resolved fluorescence results that lysozyme-amphenicol adduct formation has a moderate affinity of 10(4) M(-1), and the driving forces were found to be chiefly hydrogen bonds, hydrophobic interactions and π stacking. Far-UV CD spectra confirmed that the spatial structure of lysozyme was slightly changed with a distinct reduction of α-helices in the presence of amphenicol, suggesting partial destabilization of the protein. Furthermore, via the extrinsic 8-anilino-1-naphthalenesulfonic acid fluorescence spectral properties and molecular modeling, one could see that the amphenicol binding site was situated at the deep crevice on the protein surface, and the ligand was also near to several crucial amino acid residues, such as Trp-62, Trp-63 and Arg-73. Simultaneously, contrastive studies of protein-amphenicols revealed clearly that some substituting groups, e.g. nitryl in the molecular structure of ligands, may be vitally important for the recognition activity of amphenicols with lysozyme. Due to the connection of amphenicols with fatal detrimental effects and because lysozyme has been applied as a drug carrier for proximal tubular targeting, the discussion herein is necessary for rational antibiotic use, development of safe antibiotics and particularly a better appraisal of the risks associated with human exposure to toxic agrochemicals.


Assuntos
Cloranfenicol/química , Cloranfenicol/metabolismo , Rim/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Humanos , Modelos Moleculares , Estrutura Molecular , Muramidase/química , Muramidase/metabolismo , Ligação Proteica , Conformação Proteica
18.
Food Funct ; 5(6): 1203-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705828

RESUMO

Azo compounds are the largest chemical class of agents frequently used as colorants in a variety of consumer goods and farm produce; therefore, they may become a hazard to public health, because numerous azo compounds and their metabolites are proven to be carcinogens and mutagens. Herein several qualitative and quantitative analytical techniques, including steady state and time-resolved fluorescence, circular dichroism (CD), computer-aided molecular docking as well as molecular dynamics simulation, were employed to ascertain the molecular recognition between the principal vehicle of ligands in human plasma, albumin and a model azo compound, flavazin. The results show that the albumin spatial structure was changed in the presence of flavazin with a decrease of α-helix suggesting partial protein destabilization/self-regulation, as derived from steady state fluorescence, far-UV CD and detailed analyses of three-dimensional fluorescence spectra. Time-resolved fluorescence further evinced that the recognition mechanism is related to albumin-flavazin adduct formation with an association intensity of 10(4) M(-1), and the driving forces were found to be chiefly π-π interactions, hydrophobic interactions and hydrogen bonds. The specific binding domain of flavazin in protein was defined from molecular docking; subdomain IIA (Sudlow's site I) was found to retain high affinity for the ligand flavazin. This finding corroborates the results of competitive ligand displacement experiments, a hydrophobic 8-anilino-1-naphthalenesulfonic acid probe study and protein denaturation results, placing flavazin at the warfarin-azapropazone site. Based on molecular dynamics simulation, it can be said with certainty that the results of molecular docking are credible, and the key amino acid residues participating in the molecular recognition of flavazin by protein are clearly Trp-214, Arg-222 and Lys-436. The outcomes presented here will help to further comprehend the molecular recognition of azo compounds by protein and the possible toxicological profiles of other compounds that have configurations analogous to azo chemicals.


Assuntos
Compostos Azo/química , Corantes/química , Simulação de Dinâmica Molecular , Albumina Sérica/química , Naftalenossulfonato de Anilina/química , Sítios de Ligação , Dicroísmo Circular , Qualidade de Produtos para o Consumidor/normas , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Estrutura Secundária de Proteína
19.
J Agric Food Chem ; 62(10): 2271-83, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24548018

RESUMO

Triterpenoids were thought to be biologically ineffective for a very long time, but aggregating proof on their widely ranging pharmacological activities paired with a dubious toxicity portrait has motivated regenerated attraction for human health and disease. In the current contribution, our central goal was to integratively dissect the biointeraction of two typical triterpenoids, ursolic acid and oleanolic acid, by the most fundamental macromolecule bovine serum albumin (BSA) by employing molecular modeling, steady state and time-resolved fluorescence, and circular dichroism spectra at the molecular scale. Based on molecular modeling, subdomain IIA, which matches Sudlow's site I, was allocated to retain high affinity for triterpenoids, but the affinity of ursolic acid with subdomain IIA is somewhat inferior compared to that of oleanolic acid, probably because the affinity differentiation arises from the different positions of the methyl group on the E-ring in the two triterpenoids. This sustains the site-specific ligands, and hydrophobic 8-anilino-1-naphthalenesulfonic acid probe results in arranging the triterpenoids at the warfarin-azapropazone site. The data of steady state and time-resolved fluorescence indicated that the recognition of triterpenoids by BSA produced quenching by a static type, in other words, the ground state BSA-triterpenoid complex formation with the affinities of 1.507/1.734, 1.042/1.186, and 0.8395/0.9863 × 10(4) M(-1) at 298, 304, and 310 K for ursolic acid/oleanolic acid, respectively. Thermodynamic analyses show that the basic forces acting between BSA and triterpenoids are hydrogen bonds, van der Waals forces, and hydrophobic interactions; this occurrence provoked the alterations of the BSA spatial structure with a noticeable decline of α-helix evoking perturbation of the protein, as stemmed from circular dichroism, synchronous fluorescence, and three-dimensional fluorescence measurements. We anticipate that the complexation of plant triterpenoids with protein delineated here may be exploited as a biologically relevant model for evaluating the physiologically applicable noncovalent complexes in in vivo examination of triterpenoid properties such as accumulation, bioavailability, and distribution.


Assuntos
Aditivos Alimentares/farmacocinética , Ácido Oleanólico/farmacocinética , Soroalbumina Bovina/metabolismo , Triterpenos/farmacocinética , Naftalenossulfonato de Anilina , Sítios de Ligação , Disponibilidade Biológica , Dicroísmo Circular , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ácido Oleanólico/química , Conformação Proteica , Soroalbumina Bovina/química , Termodinâmica , Triterpenos/química , Ácido Ursólico
20.
Mol Biosyst ; 10(1): 138-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24226412

RESUMO

Malachite green is an organic compound that can be widely used as a dyestuff for various materials; it has also emerged as a controversial agent in aquaculture. Since malachite green is proven to be carcinogenic and mutagenic, it may become a hazard to public health. For this reason, it is urgently required to analyze this controversial dye in more detail. In our current research, the interaction between malachite green and hemoglobin under physiological conditions was investigated by the methods of molecular modeling, fluorescence spectroscopy, circular dichroism (CD) as well as hydrophobic ANS displacement experiments. From the molecular docking, the central cavity of hemoglobin was assigned to possess high-affinity for malachite green, this result was corroborated by time-resolved fluorescence and hydrophobic ANS probe results. The recognition mechanism was found to be of static type, or rather the hemoglobin-malachite green complex formation occurred via noncovalent interactions such as π-π interactions, hydrogen bonds and hydrophobic interactions with an association constant of 10(4) M(-1). Moreover, the results also show that the spatial structure of the biopolymer was changed in the presence of malachite green with a decrease of the α-helix and increase of the ß-sheet, turn and random coil suggesting protein damage, as derived from far-UV CD and three-dimensional fluorescence. Results of this work will help to further comprehend the molecular recognition of malachite green by the receptor protein and the possible toxicological profiles of other compounds, which are the metabolites and ramifications of malachite green.


Assuntos
Carcinógenos/química , Hemoglobinas/química , Simulação de Acoplamento Molecular , Corantes de Rosanilina/química , Sítios de Ligação , Carcinógenos/toxicidade , Dicroísmo Circular , Simulação por Computador , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estrutura Secundária de Proteína , Corantes de Rosanilina/toxicidade , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...