Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hortic Res ; 11(5): uhae057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720932

RESUMO

Pumpkin CmoNAC1 enhances salt tolerance in grafted cucumbers. However, the potential interactions with other proteins that may co-regulate salt tolerance alongside CmoNAC1 have yet to be explored. In this study, we identified pumpkin CmoDREB2A as a pivotal transcription factor that interacts synergistically with CmoNAC1 in the co-regulation of salt tolerance. Both transcription factors were observed to bind to each other's promoters, forming a positive regulatory loop of their transcription. Knockout of CmoDREB2A in the root resulted in reduced salt tolerance in grafted cucumbers, whereas overexpression demonstrated the opposite effect. Multiple assays in our study provided evidence of the protein interaction between CmoDREB2A and CmoNAC1. Exploiting this interaction, CmoDREB2A facilitated the binding of CmoNAC1 to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1, inducing H2O2 and ABA synthesis and increasing the K+/Na+ ratio in grafted cucumbers under salt stress. Additionally, CmoNAC1 also promoted the binding of CmoDREB2A to CmoHAK5;1/CmoHAK5;2 promoters, further contributing to the K+/Na+ homeostasis. In summary, these findings reveal a crucial mechanism of CmoNAC1 and CmoDREB2A forming a complex enhancing salt tolerance in grafted cucumbers.

2.
Hortic Res ; 10(9): uhad157, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719275

RESUMO

The NAC transcription factor is a type of plant-specific transcription factor that can regulate plant salt tolerance, but the underlying mechanism is unclear in grafted vegetables. H2O2 and ABA in pumpkin rootstocks can be transported to cucumber scion leaves, promoting stomatal closure to improve salt tolerance of grafted cucumbers. Despite these observations, the regulatory mechanism is unknown. Here, our research revealed that CmoNAC1 is a key transcription factor that regulates H2O2 and ABA signaling in pumpkin roots under salt stress. The function of CmoNAC1 was analyzed using root transformation and RNA-seq, and we found that pumpkin CmoNAC1 promoted the production of H2O2 and ABA via CmoRBOHD1 and CmoNCED6, respectively, and regulated K+/Na+ homeostasis via CmoAKT1;2, CmoHKT1;1, and CmoSOS1 to improve salt tolerance of grafted cucumbers. Root knockout of CmoNAC1 resulted in a significant decrease in H2O2 (52.9% and 32.1%) and ABA (21.8% and 42.7%) content and K+/Na+ ratio (81.5% and 56.3%) in leaf and roots of grafted cucumber, respectively, while overexpression showed the opposite effect. The root transformation experiment showed that CmoNCED6 could improve salt tolerance of grafted cucumbers by regulating ABA production and K+/Na+ homeostasis under salt stress. Finally, we found that CmoNAC1 bound to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1 using yeast one-hybrid, luciferase, and electrophoretic mobility shift assays. In conclusion, pumpkin CmoNAC1 not only binds to the promoters of CmoRBOHD1 and CmoNCED6 to regulate the production of H2O2 and ABA signals in roots, but also binds to the promoters of CmoAKT1;2 and CmoHKT1;1 to increase the K+/Na+ ratio, thus improving salt tolerance of grafted cucumbers.

3.
Hortic Res ; 10(1): uhac227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643752

RESUMO

Tomato (Solanum lycopersicum) is among the most important vegetables across the world, but cold stress usually affects its yield and quality. The wild tomato species Solanum habrochaites is commonly utilized as rootstock for enhancing resistance against abiotic stresses in cultivated tomato, especially cold resistance. However, the underlying molecular mechanism remains unclear. In this research, we confirmed that S. habrochaites rootstock can improve the cold tolerance of cultivated tomato scions, as revealed by growth, physiological, and biochemical indicators. Furthermore, transcriptome profiling indicated significant differences in the scion of homo- and heterografted seedlings, including substantial changes in jasmonic acid (JA) biosynthesis and signaling, which were validated by RT-qPCR analysis. S. habrochaites plants had a high basal level of jasmonate, and cold stress caused a greater amount of active JA-isoleucine in S. habrochaites heterografts. Moreover, exogenous JA enhanced while JA inhibitor decreased the cold tolerance of tomato grafts. The JA biosynthesis-defective mutant spr8 also showed increased sensitivity to cold stress. All of these results demonstrated the significance of JA in the cold tolerance of grafted tomato seedlings with S. habrochaites rootstock, suggesting a future direction for the characterization of the natural variation involved in S. habrochaites rootstock-mediated cold tolerance.

4.
Plant Sci ; 326: 111509, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283579

RESUMO

Grafting can improve the salt tolerance of many crops. However, critical genes in scions responsive to rootstock under salt stress remain a mystery. We found that pumpkin rootstock decreased the content of Na+ by 70.24 %, increased the content of K+ by 25.9 %, and increased the K+/Na+ ratio by 366.0 % in cucumber scion leaves. RNA-seq analysis showed that ion transport-related genes were the key genes involved in salt stress tolerance in grafted cucumber. The identification and analysis of the expression of K+ transporter proteins in cucumber and pumpkin revealed six and five HAK5 members, respectively. The expression of CsHAK5;3 in cucumber was elevated in different graft combinations under salt stress and most notably in cucumber scion/pumpkin rootstock. CsHAK5;3 was localized to the plasma membrane, and a yeast complementation assay revealed that it can transport K+. CsHAK5;3 knockout in hairy root mutants decreased the K+ content of leaves (45.6 %) and roots (50.3 %), increased the Na+ content of leaves (29.3 %) and roots (34.8 %), and decreased the K+/Na+ ratio of the leaves (57.9 %) and roots (62.9 %) in cucumber. However, CsHAK5;3 overexpression in hairy roots increased the K+ content of the leaves (31.2 %) and roots (38.3 %), decreased the Na+ content of leaves (17.2 %) and roots (14.3 %), and increased the K+/Na+ ratio of leaves (58.9 %) and roots (61.6 %) in cucumber. In conclusion, CsHAK5;3 in cucumber can mediate K+ transport and is one of the key target pumpkin genes that enhance salt tolerance of cucumber grafted.


Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucumis sativus/metabolismo , Tolerância ao Sal/genética , Raízes de Plantas/metabolismo , Cucurbita/genética , Perfilação da Expressão Gênica , Sódio/metabolismo
5.
Chemosphere ; 299: 134474, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35367497

RESUMO

Salinity is a global issue limiting efficient agricultural production. Nano-enabled plant salt tolerance is a hot topic. However, the role of nanoparticles induced possible early stimulation on antioxidant system in its improved plant salt tolerance is still largely unknown. Here, poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles) (PNC, 7.8 nm, -31 mV) with potent ROS (reactive oxygen species) scavenging ability are used. Compared with control, no significant difference of H2O2 and O2•─ content, MDA (malondialdehyde) content, relative electric conductivity, and Fv/Fm was found in leaves and/or roots of cucumber before onset of salinity stress, regardless of leaf or root application of PNC. While, before onset of salinity stress, compared with control, the activities of SOD (superoxide dismutase, up to 1.8 folds change), POD (peroxidase, up to 2.5 folds change) and CAT (catalase, up to 2.3 folds change), and the content of GSH (glutathione, up to 3.0 folds change) and ASA (ascorbic acid, up to 2.4 folds change) in leaves and roots of cucumber with PNC leaf spray or root application were significantly increased. RNA seq analysis further confirmed that PNC foliar spray upregulates more genes in leaves over roots than the root application. These results showed that foliar sprayed PNC have stronger early stimulation effect on antioxidant system than the root applied one and leaf are more sensitive to PNC stimulation than root. After salt stress, cucumber plants with foliar sprayed PNC showed better improvement in salt tolerance than the root applied one. Also, plants with foliar sprayed PNC showed significant higher whole plant cerium content than the root applied one after salt stress. In summary, we showed that foliar spray of nanoceria is more optimal than root application in terms of improving cucumber salt tolerance, and this improvement is associated with better stimulation on antioxidant system in plants.


Assuntos
Cucumis sativus , Nanopartículas , Antioxidantes/farmacologia , Glutationa/farmacologia , Peróxido de Hidrogênio/farmacologia , Folhas de Planta , Tolerância ao Sal
6.
Materials (Basel) ; 10(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28772500

RESUMO

The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ) of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around AC1), 900 °C (slightly below AC3), and 940 °C (moderately above AC3) for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT) at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...