Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Dev ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38801165

RESUMO

The therapeutic potential of autologous stem cell transplantation for heart repair diminishes in the elderly due to stem cell aging. Rejuvenating aged stem cells to enhance their protective effects on injured cardiomyocytes is crucial for aging patients with heart failure. In this study, we aimed to investigate whether neuron-derived neurotrophic factor (NDNF) over-expression improves the protective effect of aged stem cells for injured cardiomyocytes and explore the underlying mechanism. Human bone marrow was collected from both young and old patients, and bone marrow mesenchymal stem cells (BMSCs) were cultured. Lentivirus expression vectors carrying NDNF genes were used to transfect aged BMSCs. Fatal hypoxia-induced injury in H9C2 cells served as an in vitro ischemia model. The conditioned medium from different BMSC groups was applied to assess the beneficial effects on hypoxia-induced damage in myocardial H9C2 cells. Results revealed that the conditioned medium of NDNF over-expressed old BMSCs increased H9C2 cell viability and reduced oxidative stress and apoptosis levels under fatal hypoxia. NDNF over-expressed old BMSCs exhibited an antiapoptotic role by upregulating the antiapoptotic gene Bcl-2 and downregulating the proapoptotic genes Bax. Additionally, the protective effects were mediated through the elevation of phosphorylated AKT. Our data support the promise of NDNF as a potential target to enhance the protective effects of autologous aged BMSCs on ischemic cardiomyocytes and then improve the curative effects of stem cell for ischemic heart injury in aged patients.

2.
Tissue Eng Part A ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38661545

RESUMO

Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.

3.
Stem Cells ; 42(5): 430-444, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253331

RESUMO

It has been documented that the uterus plays a key cardio-protective role in pre-menopausal women, which is supported by uterine cell therapy, to preserve cardiac functioning post-myocardial infarction, being effective among females. However, whether such therapies would also be beneficial among males is still largely unknown. In this study, we aimed to fill in this gap in knowledge by examining the effects of transplanted uterine cells on infarcted male hearts. We identified, based on major histocompatibility complex class I (MHC-I) expression levels, 3 uterine reparative cell populations: MHC-I(neg), MHC-I(mix), and MHC-I(pos). In vitro, MHC-I(neg) cells showed higher levels of pro-angiogenic, pro-survival, and anti-inflammatory factors, compared to MHC-I(mix) and MHC-I(pos). Furthermore, when cocultured with allogeneic mixed leukocytes, MHC-I(neg) had lower cytotoxicity and leukocyte proliferation. In particular, CD8+ cytotoxic T cells significantly decreased, while CD4+CD25+ Tregs and CD4-CD8- double-negative T cells significantly increased when cocultured with MHC-I(neg), compared to MHC-I(mix) and MHC-I(pos) cocultures. In vivo, MHC-I(neg) as well as MHC-I(mix) were found under both syngeneic and allogeneic transplantation in infarcted male hearts, to significantly improve cardiac function and reduce the scar size, via promoting angiogenesis in the infarcted area. All of these findings thus support the view that males could also benefit from the cardio-protective effects observed among females, via cell therapy approaches involving the transplantation of immuno-privileged uterine reparative cells in infarcted hearts.


Assuntos
Infarto do Miocárdio , Útero , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Masculino , Feminino , Animais , Útero/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe I/metabolismo
4.
Adv Healthc Mater ; 13(10): e2304207, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175149

RESUMO

Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.


Assuntos
Quitosana , Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Polímeros/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pirróis , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Preparações de Ação Retardada/farmacologia , Peróxido de Hidrogênio/metabolismo , Infarto do Miocárdio/terapia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Miócitos Cardíacos/metabolismo
5.
Comb Chem High Throughput Screen ; 27(1): 118-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37143278

RESUMO

BACKGROUND: Colorectal cancer (CRC) is recognized as one of the frequently diagnosed malignancies, and numerous microRNAs (miRs) are identified to be active in CRC. OBJECTIVE: This work aimed to clarify the effect of miR-141-3p on the radiosensitivity of CRC cells. METHODS: Firstly, CRC cell lines were cultured and applied to construct radiation-resistant CRC cells via X-ray treatment. The expression levels of miR-141-3p and long non-coding RNA DLX6 antisense RNA 1 (lncRNA DLX6-AS1) in CRC cells were measured using real-time quantitative polymerase chain reaction. After transfection with miR-141-3p mimics and 24 h treatment with 6- MV X-ray (0, 2, 4, 6 Gy), the survival fraction (SF) and the colony formation ability of CRC cells were determined using the cell counting kit-8 and colony formation methods. The interactions between miR-141-3p and DLX6-AS1 were analyzed using the dual-luciferase assay. The impact of miR-141-3p on DLX6-AS1 stability was detected after adding actinomycin-D. The role of DLX6- AS1 in the radiosensitivity of CRC cells was explored by transfecting oe-DLX6-AS1 into radiation- resistant CRC cells overexpressing miR-141-3p. RESULTS: The relative expression levels of miR-141-3p were downregulated in CRC cells and further declined in radiation-resistant cells. Upregulation of miR-141-3p relative expression reduced SF and the colony formation ability while amplifying the radiosensitivity of radiation-resistant CRC cells. miR-141-3p directly bound to DLX6-AS1 to reduce DLX6-AS1 stability, and therefore downregulated DLX6-AS1 expression. DLX6-AS1 overexpression counteracted the role of miR- 141-3p overexpression in amplifying the radiosensitivity of radiation-resistant CRC cells. CONCLUSION: miR-141-3p binding to DLX6-AS1 significantly decreased DLX6-AS1 stability and expression, promoting the radiosensitivity of CRC cells.


Assuntos
MicroRNAs , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima , Linhagem Celular , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
7.
Mol Cell Biochem ; 478(6): 1191-1204, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36266491

RESUMO

Human endometrial mesenchymal stem cells (hEMSCs) have been shown to promote neo-vascularization; however, its angiogenic function lessens with age. To determine the optimal conditions for maximizing hEMSC angiogenic capacity, we examined the effects of serial passaging on hEMSC activity. hEMSCs were cultured from passages (P) 3, 6, 9, and 12, and analyzed for proliferation, migration, differentiation and senescence, as well as their capacity to induce angiogenesis. The results showed that hEMSC proliferation and migration significantly decreased after P12. Furthermore, hEMSC differentiation into adipogenic and osteogenic lineages, as well as their proangiogenic capacity, gradually decreased from P9-12, while senescence only occurred after P12. Evaluation of angiogenic-related protein levels showed that both transforming growth factor ß2 and Tie-2 was significantly reduced in hEMSCs at P12, compared to P3, possibly serving as the basis behind their lowered angiogenic capacity. Furthermore, in vivo angiogenesis evaluation with Matrigel plug assay showed that the optimal hEMSC to HUVEC ratio, for maximizing vessel formation, was 1:4. This study showed that hEMSC passaging was associated with lowered cellular functioning, bringing them closer to a senescent phenotype, especially after P12, thereby defining the optimal time period for cultivating fully functional hEMSCs for therapeutic applications.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Células-Tronco Mesenquimais , Humanos , Diferenciação Celular , Neovascularização Fisiológica , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Proliferação de Células
8.
Biochem Biophys Res Commun ; 627: 45-51, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007334

RESUMO

The benefits of autologous cell therapy for cardiac repair are diminished in aged individuals due to the limited quality and poor tolerance of aged stem cells in the ischemic micro-environment. The safe and efficient methods to improve the therapeutic effect of aged stem cells are needed to treat the increasing number of aged patients with cardiac diseases. In the present study, we aimed to determine whether hypoxic preconditioning can improve the therapeutic effect of aged stem cells even if the responsiveness of aged MSCs is poor, and to seek the underlying mechanism. Using a murine model of MI, our results showed that hypoxic preconditioning promoted the therapeutic effect of aged BMSCs, which was expressed in improved cardiac function, decreased scar size and alleviated cardiac remodeling in vivo. This in vivo effect of hypoxic preconditioned aged BMSCs was associated with alleviated inflammation, oxidative stress and apoptosis in infarcted heart. In vitro studies confirmed that hypoxic preconditioned aged BMSCs exert cytoprotective impacts on H9C2 cells against lethal hypoxia injury via attenuating oxidative stress and apoptosis. Our data support the promise of hypoxic preconditioning as a potential strategy to improve autologous stem cell therapy for ischemic heart injury in aged individuals.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Idoso , Animais , Apoptose , Humanos , Hipóxia , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Infarto do Miocárdio/terapia , Estresse Oxidativo
9.
Stem Cell Res Ther ; 12(1): 344, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112245

RESUMO

BACKGROUND: The human endometrium in premenopausal women is an active site of physiological angiogenesis, with regenerative cells present, suggesting that the endometrium contains adult angiogenic stem cells. In the context of cardiac repair after ischemic injury, angiogenesis is a crucial process to rescue cardiomyocytes. We therefore investigated whether human endometrium-derived stem cells (hEMSCs) can be used for cardiac repair after ischemic injury and their possible underlying mechanisms. METHODS: Comparisons were made between hEMSCs successfully isolated from 22 premenopausal women and human bone marrow mesenchymal stem cells (hBMSCs) derived from 25 age-matched patients. Cell proliferation, migration, differentiation, and angiogenesis were evaluated through in vitro experiments, while the ability of hEMSCs to restore cardiac function was examined by in vivo cell transplantation into the infarcted nude rat hearts. RESULTS: In vitro data showed that hEMSCs had greater proliferative and migratory capacities, whereas hBMSCs had better adipogenic differentiation ability. Human umbilical cord vein endothelial cells, treated with conditioned medium from hEMSCs, had significantly higher tube formation than that from hBMSCs or control medium, indicating greater angiogenic potentials for hEMSCs. In vivo, hEMSC transplantation preserved cardiac function, decreased infarct size, and improved tissue repair post-injury. Cardiac metabolism, assessed by 18F-FDG uptake, showed that 18F-FDG uptake at the infarction area was significantly higher in both hBMSC and hEMSC groups, compared to the PBS control group, with hEMSCs having the highest uptake, suggesting hEMSC treatment improves cardiomyocyte metabolism and survival after injury. Mechanistic assessment of the angiogenic potential for hEMSCS revealed that angiogenesis-related factors angiopoietin 2, Fms-like tyrosine kinase 1, and FGF9 were significantly upregulated in hEMSC-implanted infarcted hearts, compared to the PBS control group. CONCLUSION: hEMSCs, compared to hBMSCs, have greater capacity to induce angiogenesis, and improved cardiac function after ischemic injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio , Diferenciação Celular , Endométrio , Feminino , Humanos , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Neovascularização Fisiológica , Células-Tronco
10.
Medicine (Baltimore) ; 99(37): e22209, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32925798

RESUMO

BACKGROUND: Vascular dementia has become the second most common type of dementia after Alzheimer disease. At present, there is no uniform standard for VaD treatment guidelines among countries. The efficacy of ginkgo biloba in the treatment of vascular dementia is still controversial. The purpose of this study is to evaluate the effectiveness and safety of ginkgo biloba in the treatment of vascular dementia through meta-analysis. METHODS: Six English databases (PubMed, Web of science, Medline, EBASE, Springer Cochrane Library, and WHO International Clinical Trials Registry Platform) and 4 Chinese databases (Wan fang Database, Chinese Scientific Journal Database, China National Knowledge Infrastructure Database(CNKI) and Chinese Biomedical Literature Database) will be searched normatively according to the rule of each database from the inception to August 1, 2020. Two reviewers will independently conduct article selection, data collection, and risk of bias evaluation. Any disagreement will be resolved by discussion with the third reviewer. Either the fixed-effects or random-effects model will be used for data synthesis based on the heterogeneity test. The change in the scores on mini-mental state examination, activity of daily living scale and Montreal cognitive assement will be used as the main outcome measure, Hamilton depression scale, Hastgawa dementia scale, blessed dementia scale, clinical dmentia rating scale as the secondary outcome. Treatment emergent symptom scale, general physical examination (temperature, pulse, respiration, blood pressure), Routine examination of blood, urine and stool, electrocardiogram, liver and kidney function examination as the security indexs. RevMan5.3.5 will be used for meta-analysis. RESULTS: This study will provide high-quality evidence to assess the effectiveness and safety of ginkgo preparation for vascular dementia. CONCLUSION: This systematic review will explore whether ginkgo preparation is an effective and safe intervention for vascular dementia. ETHICS AND DISSEMINATION: Ethical approval are not required for this study. The systematic review will be published in a peer-reviewed journal, presented at conferences, and will be shared on social media platforms. This review will be disseminated in a peer-reviewed journal or conference presentation. PROSPERO REGISTRATION NUMBER: PROSPERO CRD42020167851.


Assuntos
Demência Vascular/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Atividades Cotidianas , Demência Vascular/epidemiologia , Depressão/epidemiologia , Ginkgo biloba , Nível de Saúde , Humanos , Testes de Estado Mental e Demência , Extratos Vegetais/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Metanálise como Assunto
11.
J Cell Mol Med ; 23(9): 5981-5993, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287219

RESUMO

The decline of cell function caused by ageing directly impacts the therapeutic effects of autologous stem cell transplantation for heart repair. The aim of this study was to investigate whether overexpression of neuron-derived neurotrophic factor (NDNF) can rejuvenate the adipose-derived stem cells in the elderly and such rejuvenated stem cells can be used for cardiac repair. Human adipose-derived stem cells (hADSCs) were obtained from donors age ranged from 17 to 92 years old. The effects of age on the biological characteristics of hADSCs and the expression of ageing-related genes were investigated. The effects of transplantation of NDNF over-expression stem cells on heart repair after myocardial infarction (MI) in adult mice were investigated. The proliferation, migration, adipogenic and osteogenic differentiation of hADSCs inversely correlated with age. The mRNA and protein levels of NDNF were significantly decreased in old (>60 years old) compared to young hADSCs (<40 years old). Overexpression of NDNF in old hADSCs significantly improved their proliferation and migration capacity in vitro. Transplantation of NDNF-overexpressing old hADSCs preserved cardiac function through promoting angiogenesis on MI mice. NDNF rejuvenated the cellular function of aged hADSCs. Implantation of NDNF-rejuvenated hADSCs improved angiogenesis and cardiac function in infarcted mouse hearts.


Assuntos
Envelhecimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Infarto do Miocárdio/terapia , Proteínas do Tecido Nervoso/metabolismo , Regeneração/fisiologia , Transplante de Células-Tronco , Células-Tronco/citologia , Adipócitos/citologia , Tecido Adiposo/citologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Coração/fisiologia , Traumatismos Cardíacos/terapia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Rejuvenescimento/fisiologia , Transplante Heterólogo , Adulto Jovem
12.
Sci Rep ; 5: 11397, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26235050

RESUMO

Due to the increasing concern of using smallpox virus as biological weapons for terrorist attack, there is renewed interest in studying the pathogenesis of human smallpox and development of new therapies. Animal models are highly demanded for efficacy and safety examination of new vaccines and therapeutic drugs. Here, we demonstrated that both wild type and immunodeficient rats infected with an engineered vaccinia virus carrying Firefly luciferase reporter gene (rTV-Fluc) could recapitulate infectious and clinical features of human smallpox. Vaccinia viral infection in wild type Sprague-Dawley (SD) rats displayed a diffusible pattern in various organs, including liver, head and limbs. The intensity of bioluminescence generated from rTV-Fluc correlated well with viral loads in tissues. Moreover, neutralizing antibodies had a protective effect against virus reinfection. The recombination activating gene 2 (Rag2) knockout rats generated by transcription activator-like effector nucleases (TALENs) technology were further used to examine the infectivity of the rTV-Fluc in immunodeficient populations. Here we demonstrated that Rag2-/- rats were more susceptible to rTV-Fluc than SD rats with a slower virus clearance rate. Therefore, the rTV-Fluc/SD rats and rTV-Fluc/Rag2-/- rats are suitable visualization models, which recapitulate wild type or immunodeficient populations respectively, for testing human smallpox vaccine and antiviral drugs.


Assuntos
Varíola/patologia , Vaccinia virus/patogenicidade , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Anticorpos Neutralizantes/uso terapêutico , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Chlorocebus aethiops , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Genótipo , Humanos , Hospedeiro Imunocomprometido , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Imagem Óptica , Ratos , Ratos Sprague-Dawley , Varíola/prevenção & controle , Varíola/virologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vaccinia virus/genética , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...