Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133409, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211520

RESUMO

p-Phenylenediamine (PPD) antioxidants are heavily used for protection of commercial rubber products (e.g., vehicle tire), resulting in their widespread contamination in ecosystem. PPD-quinones (PPDQs), the toxic quinone derivatives of PPDs, are also discovered as novel environmental pollutants. However, the contamination characteristics of PPDs/PPDQs in fresh atmospheric snow (without deposition on the Earth surface) have seldom been studied. This work first reports the broad distributions of PPDs and PPDQs in fresh atmospheric snow collected from seven Chinese urban areas. Individual median values of detected concentrations were in the ranges of 0.4 to 260 pg g-1 (PPDs) and 0.7 to 104 pg g-1 (PPDQs). The concentration deviation by long-term deposition on the ground was eliminated. In most sampling regions, wearing of vehicle rubber tires was possibly responsible for spatial-dependent PPDs' pollution level variations, and high concentrations of PPDs promoted PPDQs' formation in snow from atmosphere. Yet, excessive O3 may further oxidize and reduce PPDQs in atmospheric fresh snow from Zhengzhou, which is different from previous research. Furthermore, snowfall was noticed might amplify concentrations of three PPDs and PPDQs in an inland lake, which possibly worsen corresponding pollution in water system. Current study elucidates the potential impacts of snow-bound PPDs/PPDQs on ecosystems should not be underestimated.

2.
Environ Pollut ; 343: 123212, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145640

RESUMO

Perfluorooctanoic acid (PFOA) has drawn increasing attention as a highly persistent organic pollutant. The inherent stability, rigidity and potential toxicities characteristics make it a challenge to develop efficient technologies to eliminate it from water. Photocatalytic technology, as one advanced method, has been widely used in the degradation of PFOA in water. In this review, recent progress in the design of photocatalysts including doping, defects engineering, heterojunction and surface modification to boost the photocatalytic performance toward PFOA is summarized. The relevant degradation mechanisms were also discussed in detail. Finally, future prospect and challenges are proposed. This review may provide new guidelines for researchers to design much more efficient photocatalysts applied in the elimination of PFOA.


Assuntos
Fluorocarbonos , Água , Caprilatos , Fluorocarbonos/análise , Poluentes Orgânicos Persistentes
3.
Front Nutr ; 10: 1227517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575327

RESUMO

Capsaicin is the main food active component in Capsicum that has gained considerable attention due to its broad biological activities, including antioxidation, anti-inflammation, anti-tumor, weight regulation, cardiac protection, anti-calculi, and diurnal-circadian regulation. The potent biological effects of capsaicin are intimately related to metabolic pathways such as lipid metabolism, energy metabolism, and antioxidant stress. Mass spectrometry (MS) has emerged as an effective tool for deciphering the mechanisms underlying capsaicin metabolism and its biological impacts. However, it remains challenging to accurately identify and quantify capsaicin and its self-metabolites in complex food and biological samples, and to integrate multi-omics data generated from MS. In this work, we summarized recent advances in the detection of capsaicin and its self-metabolites using MS and discussed the relevant MS-based studies of metabolic pathways. Furthermore, we discussed current issues and future directions in this field. In-depth studies of capsaicin metabolism and its physiological functions based on MS is anticipated to yield new insights and methods for preventing and treating a wide range of diseases.

4.
Anal Chem ; 95(7): 3556-3562, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36757384

RESUMO

The broad application of plastic products has resulted in a considerable release of microplastics (MPs) into the ecosystem. While MPs in other environmental matrices (e.g., soil and water) have been studied for a long time, the atmospheric fine particulate matter (PM2.5)-bound MPs are rarely investigated due to the lack of an appropriate analytical approach. The prevalently used visual and spectroscopic means (e.g., optical microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy) suffer from obvious drawbacks that cannot precisely detect MPs of tiny sizes and provide quantitative information. In the present study, a novel strategy that does not require sample pretreatment was developed to first effectuate accurate quantification of polyethylene MP (PE-MP) in PM2.5 based on pyrolysis-gas chromatography-tandem mass spectrometry (Pyr-GC-MS/MS). It featured acceptable recoveries (97%-110%), high sensitivity (LOD = 1 pg), and qualified precisions (RSD of 3%-13%). Employing this approach, for the first time, exact atmospheric concentrations of PE-MPs in PM2.5 from megacities in North (Zhengzhou and Taiyuan) and South (Guangzhou) China were obtained, and relatively serious pollution was found in Taiyuan. The 100% sample detection rates also suggested the widespread occurrence and possible human exposure risks of PM2.5-bound PE-MPs. In brief, the new strategy could conduct direct, sensitive, and accurate quantification of PE-MP in PM2.5, favoring further studies of environmental fates, distributions, and toxicities of atmospheric MPs.

5.
Anal Chem ; 94(35): 12136-12143, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35993787

RESUMO

Matrix deposition plays an important role in obtaining high-quality and reliable molecular spatial location information for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To control the matrix film formation, an automatic matrix spraying apparatus was developed with the introduction of a noncontact heating lamp. Compared with the unheated condition, the noncontact heating lamp suppressed the coffee-ring effect and the diffusion phenomenon of the analyte effectively by controllable matrix film formation. Meanwhile, the signal intensity was increased by 2-5 fold. To prove the ability of the matrix deposition apparatus, the apparatus combined with metabolomics analysis was used to show the spatial distribution of the substance in sprouted potato tubers. The potential biomarkers at m/z 868.5049 and m/z 852.5101 were identified as α-solanine and α-chaconine, and the synthesis pathways were further searched. To further demonstrate the quality of MALDI images including localization and spatial resolution, lipid distribution in rat brain tissue was investigated by the developed noncontact heating matrix spraying apparatus. An excellent match with distinguishable compartments of lipids in the rat brain was obtained between the H&E-stained sections and MALDI-MSI images. These results indicate that the developed noncontact heating matrix spraying apparatus is reliable and provides a low-cost, high-quality, rapid approach for MALDI-MSI.


Assuntos
Calefação , Metabolômica , Animais , Encéfalo/metabolismo , Diagnóstico por Imagem , Metabolômica/métodos , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Food Chem ; 383: 132380, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35180599

RESUMO

The concentration of aldehydes is one of the important indicators in the food quality and safety. To efficiently analyze the four aldehydes (methanal, ethanal, propanal and n-butanal) in beer, charged microdroplet driving online derivatization apparatus coupled with high resolution mass spectrometry was firstly developed. Utilizing the high-speed reaction accelerated by microdroplets, the offline derivative of aldehydes with 2,4-dinitrophenylhydrazine in bulk was transferred into online derivatization. The developed method featured acceptable linearities (R2 ≥ 0.95), high sensitivities (LODs at ng mL-1 level) and qualified precisions (RSDs ≤ 8.4 %) for target compounds. Four aldehydes with trace amount were successfully determined in beer. The results indicated that the novel online analytical strategy did not require complex sample preparation and could conduct simple, rapid, sensitive detection of small molecule aldehydes with high throughput in beer or even other food samples.


Assuntos
Aldeídos , Cerveja , Aldeídos/análise , Cerveja/análise , Espectrometria de Massas
7.
Se Pu ; 39(9): 998-1005, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34486839

RESUMO

In this work, a polymer precursor was first synthesized using p-terphenyl (TP) and terephthaloyl chloride (TC) as monomers. Then, cross-linking was realized by means of a Schiff base reaction with melamine (MA) as a modifier to obtain an amine-functionalized porous organic polymer TP-TC-MA. The synthesized polymers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and point of zero charge (pHpzc) measurements, as well as on the basis of nitrogen adsorption-desorption isotherms. Adsorption experiments were carried out to evaluate the adsorption properties of TP-TC-MA for methyl orange (MO), a typical anionic azo dye that has widespread industrial application. The amount of MO adsorbed on TP-TC-MA was evaluated by ultraviolet-visible (UV-Vis) spectroscopy at a wavelength of 463 nm. Microscopic analysis revealed that the as-synthesized polymer had an aggregated particle-shaped structure. XRD spectra confirmed that TP-TC-MA was an amorphous polymer, consistent with the results of high-resolution TEM experiments. The Brunauer-Emmett-Teller (BET) specific surface area and total pore volume of TP-TC-MA were determined as 708.5 m 2/g and 0.556 cm3/g, respectively. The measured pHpzc of TP-TC-MA was 4.0, probably because of the abundant nitrogen-containing groups provided by MA. The factors affecting adsorption, such as pH, adsorbent dosage, contact time, initial pollutant concentration, and ionic strength, were investigated. Because of the protonation of the N-atom in TP-TC-MA, the pH had a strong impact on the adsorption of MO. The removal efficiency could be maximized at the optimized pH of 3.0. The adsorption equilibrium isotherm, measured at 25 ℃ and a concentration of 50-500 mg/L, showed that the MO adsorption over TP-TC-MA followed the Langmuir isotherm, with a maximum adsorption capacity of 156.3 mg/g. The modeling of the experimental adsorption data was consistent with the pseudo-second-order kinetic model, which indicated fast adsorption and chemisorption as the dominant mechanism. With increasing ionic strength, the adsorption of MO slightly decreased, suggesting a partial antagonistic ion effect. Results of the selectivity study revealed that TP-TC-MA was more selective toward MO than methylene blue (MB), which indicated that electrostatic interactions played a significant role during the adsorption progress. Five adsorption-desorption cycles showed that TP-TC-MA could be regenerated without significant deterioration of its adsorption efficiency, indicating that it has good stability and reusability. The observed adsorption performance indicated that this MA-modified porous organic polymer offers prospects for further research and application in the treatment of dye-containing wastewaters.


Assuntos
Polímeros , Poluentes Químicos da Água , Adsorção , Compostos Azo , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas , Poluentes Químicos da Água/análise
8.
Se Pu ; 38(1): 143-148, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34213162

RESUMO

A novel method based on solid phase extraction (SPE)-high performance liquid chromatography (HPLC) was developed for the simultaneous determination of nitrophenols and diethylstilbestrol in river water. Tetraaza[2]arene[2]triazine-bonded silica gel, a homemade SPE adsorbent, was used to enrich the nitrophenols and diethylstilbestrol, and the optimal SPE and HPLC conditions were established. The sample solution was adjusted to pH 5, purified with a lab-made solid phase extraction column, and then eluted with 2 mL ammonia-methanol (2:98, v/v). The enriched sample was separated on a C8 column with methanol and 0.1% phosphoric acid solution as mobile phases in a gradient elution. Under the optimized conditions, the limits of detection (LOD, S/N=3) for the four target analytes were 0.03-0.3 µg/L, and the limits of quantification (LOQ, S/N=10) were 0.1-1.0 µg/L. The recoveries were 75.5%-104.2%, and the relative standard deviations (RSD, n=5) were less than 6.3%. The proposed method is accurate and reliable, and it has been successfully used for determining nitrophenols and diethylstilbestrol in river water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...