Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Clin Chim Acta ; 560: 119735, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772523

RESUMO

BACKGROUND AND AIMS: Obesity-induced chronic inflammation and metabolic abnormalities are highly relevant to the functional dysregulation of macrophages, especially under obese conditions. Hyperglycemia and hyperlipidemia, central to obesity, directly alter macrophage activity. However, the impacts of different nutritional cues on the intricate metabolic networks in macrophages remain unclear. MATERIALS AND METHODS: In this study, we employed metabolomic approaches to examine the metabolic responses of macrophages to high glucose, high fat and their coexistence, aiming to delineate the molecular mechanisms of nutritional factors on macrophage activation and obesity-related diseases from a metabolic perspective. RESULTS: Our findings revealed that different nutritional conditions could reprogram key metabolism in macrophages. Additionally, we identified a metabolite derived from macrophages, Long-Chain Phosphatidylcholine (LPC), which exerts beneficial effects on obese mice. It ameliorates the obesity phenotype and improves glucose metabolism profiles. This discovery suggests that LPC has a significant therapeutic potential in the context of obesity-induced metabolic dysfunctions. Our study unveils the metabolic phenotype of macrophages in high-fat and high-sugar environments and uncovers a macrophage-derived metabolite that significantly ameliorates the obesity phenotype. CONCLUSION: This finding reveals a potential dialogue mechanism between macrophages and adipocytes, shedding light on the complex interplay of immune and metabolic systems in obesity. This discovery not only enhances our understanding of obesity's underlying mechanisms but also opens up new avenues for therapeutic interventions targeting macrophage-adipocyte interactions.


Assuntos
Macrófagos , Metabolômica , Camundongos Endogâmicos C57BL , Animais , Macrófagos/metabolismo , Camundongos , Masculino , Obesidade/metabolismo , Glucose/metabolismo , Dieta Hiperlipídica , Reprogramação Metabólica
2.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705401

RESUMO

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavonas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/toxicidade , Ácido Palmítico/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Flavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Acta Diabetol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598139

RESUMO

BACKGROUND: Obesity, defined as excessive or abnormal body fat accumulation, which could significantly increase the risk of cardiovascular disease, type 2 diabetes mellitus (T2DM) diseases and seriously affect people's quality of life. More than 2 billion people are overweight, and the incidence of obesity is increasing rapidly worldwide, it has become a widely concerned public health issue in the world. Diverse evidence show that active metabolites are involved in the pathophysiological processes of obesity. AIMS: However, whether the downstream catabolite of tryptophan, 3-indole acrylic acid (IA), is involved in obesity remains unclear. METHODS: We collected the samples of serum from peripheral blood of obesity and health controls, and liquid chromatography-mass spectrometry (LC-MS) was performed to identify the plasma levels of IA. Additionally, we verified the potential benefits of IA on human preadipocytes and HFD- induced zebrafish by cell viability assay, flow cytometry assay, Oil red O staining, total cholesterol (T-CHO), triglyceride (TG) and nonesterified free fatty acids (NEFA) measurements and Nile Red staining. RNA-Seq, functional analysis and western blot revealed the mechanisms underlying the function of IA. RESULTS: We found that the content of IA in peripheral blood serum of overweight people was significantly lower than that of normal people. In addition, supplementation with IA in zebrafish larvae induced by a high fat diet (HFD) dramatically reduced HFD induced lipid accumulation. IA had no effect on proliferation and apoptosis of preadipocytes, but significantly inhibited adipogenesis of preadipocytes by down-regulate CEBPα and PPARγ. RNA-Seq and functional analysis revealed that IA regulated the adipogenesis of preadipocytes through stimulate the phosphorylation of STAT1. CONCLUSIONS: Taken together, IA has been identified as a potent metabolite for the prevention or treatment of obesity.

4.
J Tradit Chin Med ; 44(1): 103-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213245

RESUMO

OBJECTIVE: To investigate the effect of Taohong Siwu decoction (, TSD) on atherosclerosis in rats as well as investigate the underlying mechanism based on molecular docking. METHODS: Sixty healthy male Sprague-Dawley rats were randomly divided into 6 groups with 10 rats in each group: control group, model group, atorvastatin group (AT, 2.0 mg/kg), and TSD groups (20, 10, 5 g/kg) after 7 d of acclimation. The model of atherosclerosis was successfully established except the control group by high fat diet (HFD) and vitamin D2. Biochemical analyzers were used to detect the levels of triglyceride (TG), total cholestero (TC), low density lipoprotein-cholesterol (LDL-C) and high density lipid-cholesterol (HDL-C) in blood lipid. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were determined by enzyme-linked immunosorbent assay. Sudan IV staining and Hematoxylin and eosin staining (HE staining) were performed to observe the pathological changes in aortic tissue. Molecular docking technology was used to predict the best matching between the main components of TSD and the target proteins. The expression of target proteins was further detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot analysis. RESULTS: The results showed that TSD restricted atherosclerosis development and decreased the inflammatory cytokines in plasma. Molecular docking results predicted that the main components of TSD showed a strong binding ability with toll-like receptor (TLR4), myeloid differentiation primary response protein 88 (MyD88), and nuclear factor kappa-B (NF-κB). The results of qRT-PCR and Western blot analysis showed that the mRNA and protein expressions of TLR4, MyD88 and NF-κB p65 in the aorta were reduced in atorvastatin group and TSD group. CONCLUSIONS: TSD can ameliorate atherosclerosis in rats, and the underlying mechanism is supposed be related to the suppression of inflammatory response by regulating TLR4/MyD88/NF-κB signal pathway.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Ratos Sprague-Dawley , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Atorvastatina/uso terapêutico , Simulação de Acoplamento Molecular , Transdução de Sinais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Fator de Necrose Tumoral alfa/metabolismo , Lipídeos , Colesterol
5.
China Pharmacy ; (12): 665-670, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013099

RESUMO

OBJECTIVE To investigate the effects and mechanism of polysaccharides from Hedyotis diffusa (HDP) on isoniazid (INH)-induced liver injury. METHODS Healthy transgenic zebrafish with liver-specific fluorescence were divided into normal group, model group (4 mmol/L INH), HDP low-concentration group (4 mmol/L INH+50 mg/mL HDP) and HDP high- concentration group (4 mmol/L INH+100 mg/mL HDP). After grouping treating, the liver fluorescence area, fluorescence intensity and pathological changes of liver tissue were observed. Human liver L02 cells were divided into normal group, model group (4 mmol/L INH), HDP low-concentration group (4 mmol/L INH+2 mg/mL HDP), and HDP high-concentration group (4 mmol/L INH + 4 mg/mL HDP). After grouping treating, the cell viability was detected, and the levels of alanine transaminase (ALT), aspartate transaminase (AST), and the content of glutathione (GSH) as well as the expression levels of silent information regulator 1 (Sirt1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) proteins were detected. RESULTS Compared with the model group, the HDP low- and high-concentration groups showed varying degrees of increase in the fluorescence area and fluorescence intensity (except for HDP low-concentration group) of zebrafish liver (P<0.05 or P<0.01), and the characteristics of liver injury and necrosis had been improved to varying degrees. Compared with model group, the survival rate of L02 cells, the content of GSH (except for HDP low-concentration group), the protein expression levels of Sirt1 (except for HDP low-concentration group), Nrf2, NQO1, HO-1 (except for HDP low-concentration group) were significantly increased in HDP low- and high-concentration groups (P<0.05 or P<0.01), and the levels of ALT and AST (except for HDP low-concentration group) were significantly decreased (P<0.05); the number of survival cells significantly increased, while the number of damaged or dead cells significantly decreased. CONCLUSIONS HDP has a potential protective effect against INH-induced liver injury, the mechanism of which may be associated with activating Sirt1/Nrf2 signaling pathway, improving mitochondrial function and enhancing antioxidant capacity.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003760

RESUMO

ObjectiveTo investigate the effects of Linggui Zhugantang on mitochondrial fission and fusion and silencing information regulator 3(Sirt3)/adenosine monophosphate dependent protein kinase (AMPK) signaling pathway in chronic heart failure (CHF) rats after myocardial infarction (MI). MethodSD rats randomly divide into sham operation group (normal saline ,thread only without ligature), model group (normal saline, ligation of the left anterior descending coronary artery proximal to the heart), Linggui Zhugantang group (4.8 g·kg-1) and Captopril group (0.002 57 g·kg-1), with 10 rats in each group. Administere drug continuously for 28 days. Echocardiography detected cardiac function parameters. Hematoxylin eosin (HE) staining observed the pathological changes of the heart. Immunofluorescence detected the levels of reactive oxygen species (ROS). JC-1 detect mitochondrial membrane potential. Colorimetry measure adenosine triphosphate (ATP), superoxide dismutase (SOD), malondialdehyde (MDA), mitochondrial respiratory chain complex activity (Ⅰ-Ⅳ). TdT-mediated dUTP nick end labeling (TUNEL) staining detected the apoptosis rate of myocardial tissue. Western blot detected protein expression levels of Sirt3, phosphorylated AMPK (p-AMPK), phosphorylated dynamic-related protein 1(p-Drp1), mitochondrial fission protein 1(Fis1), mitochondrial fission factor (MFF), optic atrophy protein 1(OPA1). ResultCompared to the sham group, the left ventricular end diastolic diameter (LVIDd) and left ventricular end systolic diameter (LVIDs) were significantly increased in model group (P<0.01), while the left ventricular short axis shortening rate (LVFS) and left ventricular ejection fraction (LVEF) were significantly decreased (P<0.01). There were inflammatory cell infiltration and obvious pathological injury in myocardial tissue. ROS, MDA levels and myocardial cell apoptosis rate were significantly increased (P<0.01), SOD level, ATP content, and membrane potential were significantly decreased (P<0.01). The activity of mitochondrial respiratory chain complexes (Ⅰ-Ⅳ) was significantly decreased (P<0.01). Levels of p-Drp1, Fis1, MFF proteins were significantly up-regulated (P<0.01), while Sirt3, p-AMPK, OPA1 proteins level were significantly down-regulated (P<0.01). Compared with model group, LVIDd and LVIDs were significantly decreased (P<0.01), LVEF and LVFS were significantly increased (P<0.01). Inflammatory cell infiltration and pathological damage of myocardial tissue were significantly relieved. ROS, MDA levels and myocardial cell apoptosis rate were significantly decreased in Linggui Zhugantang group and Captopril group (P<0.01), SOD level, ATP content, and membrane potential significantly increased (P<0.01). The activity of mitochondrial respiratory chain complexes (Ⅰ-Ⅳ) increased significantly (P<0.01),and p-Drp1, Fis1, MFF protein levels were significantly down-regulated (P<0.01), Sirt3, p-AMPK, OPA1 protein were significantly up-regulated (P<0.01). ConclusionLinggui Zhugantang can alleviate oxidative stress and apoptosis damage of myocardial cells, maintain mitochondrial function stability, and its effect may be related to mitochondrial mitosis fusion and Sirt3/AMPK signaling pathway.

7.
J Bioenerg Biomembr ; 55(6): 423-433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906396

RESUMO

The marker genes associated with white adipocytes and brown adipocytes have been previously identified; however, these markers have not been updated in several years, and the differentiation process of preadipocytes remains relatively fixed. Consequently, there has been a lack of exploration into alternative differentiation schemes. In this particular study, we present a transcriptional signature specific to brown adipocytes and white adipocytes. Notably, our findings reveal that ZNF497, ZIC1, ZFY, UTY, USP9Y, TXLNGY, TTTY14, TNNT3, TNNT2, TNNT1, TNNI1, TNNC1, TDRD15, SOX11, SLN, SFRP2, PRKY, PAX3KLHL40, PAX3, INKA2-AS1, SOX11, and TDRD15 exhibit high expression levels in brown adipocytes. XIST, HOXA10, PCAT19, HOXA7, PLSCR3, and AVPR1A exhibited high expression levels in white adipocytes, suggesting their potential as novel marker genes for the transition from white to brown adipocytes. Furthermore, our analysis revealed the coordinated activation of several pathways, including the PPAR signaling pathway, focal adhesion, retrograde endocannabinoid signaling, oxidative phosphorylation, PI3K-Akt signaling pathway, and thermogenesis pathways, in brown adipocytes. Moreover, in contrast to prevailing culture techniques, we conducted a comparative analysis of the differentiation protocols for white preadipocytes and brown preadipocytes, revealing that the differentiation outcome remained unaffected by the diverse culture schemes employed. However, the expression levels of certain marker genes in both adipocyte types were found to be altered. This investigation not only identified potential novel marker genes for adipocytes but also examined the impact of different differentiation methods on preadipocyte maturation. Consequently, these findings offer significant insights for further research on the differentiation processes of diverse adipocyte subtypes.


Assuntos
Adipócitos Marrons , Transcriptoma , Adipócitos Marrons/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adipócitos Brancos/metabolismo , Transdução de Sinais , Diferenciação Celular , Tecido Adiposo Marrom/metabolismo
8.
Cell Signal ; 112: 110924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838311

RESUMO

Clinical application of the widely used chemotherapeutic agent, doxorubicin (DOX), is limited by its cardiotoxicity. Mitochondrial dysfunction has been revealed as a crucial factor in DOX-induced cardiotoxicity. 7,8,3'-Trihydroxyflavone (THF) is a mimetic brain-derived neurotrophic factor with neuroprotective effects. However, the potential effects of THF on DOX-induced cardiomyocyte damage and mitochondrial disorders remain unclear. H9c2 cardiomyoblasts were exposed to DOX and/or THF at different concentrations. Cardiomyocyte injury was evaluated using lactate dehydrogenase (LDH) assay and Live/Dead cytotoxicity kit. Meanwhile, mitochondrial membrane potential (MMP), morphology, mitochondrial reactive oxygen species (mito-ROS) production, and the oxygen consumption rate of cardiomyocytes were measured. The protein levels of key mitochondria-related factors such as adenosine monophosphate-activated protein kinase (AMPK), mitofusin 2 (Mfn2), dynamin-related protein 1 (Drp1), and optic atrophy protein 1 (OPA1) were examined. We found that THF reduced LDH content and death ratio of DOX-treated cardiomyocytes in a concentration-dependent manner, while increasing MMP without significantly affecting the routine and maximum capacity of mitochondrial respiration. Mechanistically, THF increased the activity of Akt and protein levels of Mfn2 and heme oxygenase 1 (HO-1). Moreover, inhibition of Akt reversed the protective role of THF, increased mito-ROS levels, and repressed Mfn2 and HO-1 expression. Therefore, we conclude, THF relieves DOX-induced cardiotoxicity and improves mitochondrial function by activating Akt-mediated Mfn2 and HO-1 pathways. This finding provides promising therapeutic insights for DOX-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade/metabolismo , Transdução de Sinais , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Estresse Oxidativo
9.
FASEB J ; 37(12): e23278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902573

RESUMO

Obesity is a major health concern that lacks effective intervention strategies. Traumatic acid (TA) is a potent wound-healing agent in plants, considered an antioxidant food ingredient. This study demonstrated that TA treatment significantly reduced lipid accumulation in human adipocytes and prevented high-fat diet induced obesity in zebrafish. Transcriptome sequencing revealed TA-activated fatty acid (FA) degradation and FA metabolism signaling pathways. Moreover, western blotting and quantitative polymerase chain reaction showed that TA inhibited the expression of long-chain acyl-CoA synthetase-4 (ACSL4). Overexpression of ACSL4 resulted in the reversal of TA beneficiary effects, indicating that the attenuated lipid accumulation of TA was regulated by ACSL4 expression. Limited proteolysis-mass spectrometry and microscale thermophoresis were then used to confirm hexokinase 2 (HK2) as a direct molecular target of TA. Thus, we demonstrated the molecular basis of TA in regulating lipid accumulation and gave the first evidence that TA may function through the HK2-ACSL4 axis.


Assuntos
Dieta Hiperlipídica , Peixe-Zebra , Humanos , Animais , Dieta Hiperlipídica/efeitos adversos , Adipócitos , Obesidade/etiologia , Lipídeos
11.
Biochem Biophys Res Commun ; 672: 128-136, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352601

RESUMO

Human obesity is related with intrinsic impairments of adipocyte lipolysis and ectopic lipid accumulation. Small regulatory RNAs, such as tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are enriched in exosomes and play a crucial role in lipid metabolism. To determine certain tRFs for lipolysis, brown adipocytes were treated with forskolin. Using tRFs sequencing, 207 different expressed exosomal tRFs were determined. In forskolin samples, 145 downregulated and 62 upregulated tRFs were identified. Further, qRT-PCR validated that three notably upregulated tRFs (tRF-Gly-GCC-007, tRF-Gly-GCC-008, and tRF-Gly-GCC-009) were in accordance with the sequencing result. Target genes of tRFs were involved in positive regulation of protein phosphorylation and cell adhesion process by significantly downregulating UCHL1 expression, which might participate in lipolysis. This study might provide therapeutic targets and potential diagnostic biomarkers for obesity treatment.


Assuntos
Adipócitos Marrons , Metabolismo dos Lipídeos , Humanos , Adipócitos Marrons/metabolismo , Colforsina , RNA de Transferência/genética , RNA de Transferência/metabolismo , Obesidade/genética
12.
Sci Total Environ ; 872: 162059, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775142

RESUMO

Black carbon (BC), one of the pollutants emitted from fossil fuel combustion, is closely associated with minerals and other hazardous substances. To date, little is known about the mechanisms between BC and magnetic minerals. Accordingly, further investigating the association between magnetic minerals and BC is necessary. In this work, the extraction of BC from fly ash and the magnetic fraction from BC was achieved by flotation and magnetic separation, respectively. The morphology, mineralogical composition, and magnetic properties of BC and magnetic fraction were characterized by FTIR, XRD, SEM-EDS, and vibrating sample magnetometer (VSM). The results show that BC and magnetic minerals have similar mineral compositions, rich in quartz, mullite, magnetite, and hematite. The magnetic minerals have prominent spherical characteristics and are distributed on the surface and inside the pores of BC with irregular honeycomb features. The VSM and XRD analyses show that Fe3O4 is the primary magnetic material. Moreover, large amounts of C, O, and Fe around and on the surface of magnetic spheres were detected by EDS, indicating that the spherical particles may be the structure of BC-coated Fe3O4. Pyrolysis experiments showed that the yield of the magnetic fraction in the pyrolysis product reached 60 %, far exceeding the theoretical yield of 12 % based on 5 % of doped Fe. This further proves that Fe3O4 was combined with a large number of organics during its formation, which may be due to coating and chemical adsorption. Quantum chemical calculations also confirmed this chemical adsorption between Fe3O4 with BC based on density flooding theory, in which adsorption energies ranged from -213.374 KJ/mol to -827.741 KJ/mol.

13.
Free Radic Biol Med ; 198: 83-91, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764626

RESUMO

The relationship between mitochondrial dysfunction and cardiovascular disease pathogenesis is well recognized. 7,8-Dihydroxyflavone (7,8-DHF), a mimetic of brain-derived neurotrophic factor, inhibits mitochondrial impairments and improves cardiac function. However, the regulatory role of 7,8-DHF in the mitochondrial function of cardiomyocytes is not fully understood. To investigate the potential mito-protective effects of 7,8-DHF in cardiomyocytes, we treated H9c2 or HL-1 cells with the mitochondrial respiratory complex I inhibitor rotenone (Rot) as an in vitro model of mitochondrial dysfunction. We found that 7,8-DHF effectively eliminated various concentrations of Rot-induced cell death and reduced lactate dehydrogenase release. 7,8-DHF significantly improved mitochondrial membrane potential and inhibited mitochondrial reactive oxygen species. Moreover, 7,8-DHF decreased routine and leak respiration, restored protein levels of mitochondrial complex I-IV, and increased ATP production in Rot-treated H9c2 cells. The protective role of 7,8-DHF in Rot-induced damage was validated in HL-1 cells. Nuclear phosphorylation protein expression of signal transducer and activator of transcription 3 (STAT3) was significantly increased by 7,8-DHF. The present study suggests that 7,8-DHF rescues Rot-induced cytotoxicity by inhibiting mitochondrial dysfunction and promoting nuclear translocation of p-STAT3 in cardiomyocytes, thus nominating 7,8-DHF as a new pharmacological candidate agent against mitochondrial dysfunction in cardiac diseases.


Assuntos
Miócitos Cardíacos , Rotenona , Miócitos Cardíacos/metabolismo , Rotenona/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Mitocôndrias/metabolismo
14.
Cell Biol Int ; 47(3): 648-659, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36448374

RESUMO

In this study, methionine sulfoxide (MetO) was identified as an active metabolite that suppresses adipogenesis after screening obese individuals versus the normal population. MetO suppressed the gene and protein expression of CCAAT/enhancer binding protein (C/EBP) α, adipocyte fatty acid binding protein 4 (FABP4), and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) during human preadipocyte (HPA) differentiation. Adipogenesis decreased following MetO treatment; however, the preadipocyte number, proliferation, and apoptosis were unaffected. The activity of phosphorylated extracellular signal-related kinase (P-ERK) of the mitogen-activated protein kinase (MAPK) pathway was significantly inhibited in HPA after MetO treatment. Furthermore, treatment of preadipocytes with the selective P-ERK1/2 agonist Ro 67-7476 abolished the effect of MetO against adipogenesis suggesting that MetO function is dependent on the MAPK pathway. The mechanistic insights of adipogenesis suppression by MetO presented in this study shows its potential as an antiobesity drug.


Assuntos
Adipócitos , Adipogenia , Humanos , Camundongos , Animais , Adipócitos/metabolismo , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , PPAR gama/metabolismo , Células 3T3-L1 , Diferenciação Celular
15.
Eur J Pharmacol ; 938: 175420, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36427535

RESUMO

Brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) pathway is a therapeutic target in cardiac diseases. A BDNF mimetic, 7,8-dihydroxyflavone (7,8-DHF), is emerging as a protective agent in cardiomyocytes; however, its potential role in cardiac fibroblasts (CFs) and fibrosis remains unknown. Thus, we aimed to explore the effects of 7,8-DHF on cardiac fibrosis and the possible mechanisms. Myocardial ischemia (MI) and transforming growth factor-ß1 (TGF-ß1) were used to establish models of cardiac fibrosis. Hematoxylin & eosin and Masson's trichrome stains were used for histological analysis and determination of collagen content in mouse myocardium. Cell viability kit, EdU (5-ethynyl-2'-deoxyuridine) assay and immunofluorescent stain were employed to examine the effects of 7,8-DHF on the proliferation and collagen production of CFs. The levels of collagen I, α-smooth muscle actin (α-SMA), TGF-ß1, Smad2/3, and Akt as well as circadian rhythm-related signals including brain and muscle Arnt-like protein 1 (Bmal1), period 2 (Per2), and cryptochrome 2 (Cry2) were analyzed. Treatment with 7,8-DHF markedly alleviated cardiac fibrosis in MI mice. It inhibited the activity of CFs accompanied by decreasing number of EdU-positive cells and downregulation of collagen I, α-SMA, TGF-ß1, and phosphorylation of Smad2/3. 7,8-DHF significantly restored the dysregulation of Bmal1, Per2, and Cry2, but inhibited the overactive Akt. Further, inhibition of Bmal1 by SR9009 effectively attenuated CFs proliferation and collagen production of CFs. In summary, these findings indicate that 7,8-DHF attenuates cardiac fibrosis and regulates circadian rhythmic signals, at least partly, by inhibiting Bmal1/Akt pathway, which may provide new insights into therapeutic cardiac remodeling.


Assuntos
Ritmo Circadiano , Flavonas , Miocárdio , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos , Fibrose , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Flavonas/farmacologia
16.
Acta Anatomica Sinica ; (6): 13-22, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1015259

RESUMO

Objective To explore the effect of activation of mammalian target of rapmycin complex 2(mTORC2)/Akt signaling pathway on dopaminergic neurons and behavior in 6-hydroxydopamine (6-OHDA) model mice and its possible mechanism. Methods Selecting 36 mice which The Nestin-CreERTM and ROSA26-LacZ reporter genes were detected at the same time in 3-month-old male C57BL/6J mice weighing 20-25 g divideng them into 4 gruops, NS+ corn oil group, 6-OHDA+corn oil group, 6-OHDA+PP242 group and 6-OHDA+A-443654 group, and 6-OHDA was injected into the right striatum of the brain to replicate the Parkinson’s disease (PD) model of mice, and then daily intraperitoneal injection of mTORC2/Akt signaling pathway agonist A-443654 or inhibitor PP242. Serum interleukin-1β (IL-1β) and tumor necrosis factor-α(TNF-α)levels were measured by enzyme-linked immunosorbent assay. Immunohistochemistry and immunofluorescence staining were performed to investigate the change of microglia, dopaminergic neurons as well as neural progenitor cells (NPCs). Western blotting was used to detect the expression of related protein of mTORC2/Akt signaling pathway including rictor, p-Akt and regulated in development and DNA dgmage responses 1(REDD1) and the interaction between them were verified by immunoprecipitation. Finally, the behavioral performance of each group of mice was observed. Results With the activation of microglia and the increase of inflammatory factors in PD model mice, the number of dopaminergic neurons in the substantia nigra(SN) decreased significantly, and the motor function of the mice was impaired, but the number of NPCs increased significantly compared with the control mice, mTORC2/Akt signaling pathway related protein expression was also significantly up-regulated. A-443654 treatment further up-regulated the expression of these proteins, meanwhile the indicators mentioned above were ameliorated. However, the inhibitor PP242 treatment group showed completely opposite result with the agonist group. Conclusion A-443654 can promote the proliferation of NPCs and the number of new-born dopaminergic neurons by up-regulating related proteins of mTORC2/Akt signaling pathway, and reducing the activation of microglia and the level of inflammation factors, which ultimately lead to the amelioration of SN-striatal dopaminergic neurons and behavioral performance in PD model mice.

17.
Acta Anatomica Sinica ; (6): 521-530, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1015181

RESUMO

[Abstract] Objective To study whether the regulation of mammalian target of rapamycin complex 2(mTORC2) / Akt signaling pathway has a protective effect on SH-SY5Y cell line damaged by 6-hydroxydopamine (6-OHDA), and to clarify its molecular mechanism. Methods SH-SY5Y cells treated with retinoic acid (RA) were given 6-OHDA, mTORC2 signaling pathway inhibitor PP242 and agonist A-443654 respectively. The changes of cell number in each group were investigated by immunofluorescent staining; The total protein was extracted and the expression level and interaction of key proteins in mTORC2 signaling pathway were determined by Western blotting and co-immunoprecipitation (CoIP); The apoptosis rate of cells in each group was detected by flow cytometry. At the same time, the co-culture Parkinson’ s disease (PD) model was made using SH-SY5Y cell line and Bv-2 cell line; MTT colorimetric method was used to detect the cell viability of each group; ELISA was used to detect the content of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in cell culture supernatant. Results The number of tyrosine hydroxylase(TH) / proliferating cell nuclear antigen (PCNA) / hochest-, TH / 5-bronmo-2’ -deoxyuridine(BrdU) -labeled positive cells in 6-OHDA-lesioned PD cell model group was significantly lower than that in the normal group; The apoptosis rate was higher; The expression of Rictor, p-Akt and regulated in DNA damage and development 1(REDD1) was increased; There was an interaction between Rictor and p-Akt or REDD1; The cell viability was significantly reduced in the co-culture model; the content of TNF-α and IL-β increased in the cell culture supernatant. With further up-regulation of the abovementioned protein expressions, the cell survival, apoptosis and pro-inflammatory cytokine levels in A-443654 group were significantly ameliorated, while PP242 group showed the opposite changes. Conclusion A-443654 activates mTORC2 signaling pathway by p-Akt, which increases the expression of Rictor and REDD1 protein. These changes contribute to the amelioration in cell survival rate, apoptosis rate, and the proliferation and differentiation and decreasion of apoptosis rate of SH-SY5Y cells. These result improved 6-OHDA-induced cell damage and inhibited the release of pro-inflammatory cytokines.

18.
Chinese Pharmacological Bulletin ; (12): 1085-1090, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013785

RESUMO

Aim To investigate the effect of YTHDF2 on the proliferation and migration of activated hepatic stellate cells(HSCs). Methods 5 jjLg • L

19.
Chinese Pharmacological Bulletin ; (12): 2390-2397, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013660

RESUMO

Aim To investigate whether Linggui Zhugan Decoction ( LGZGD) can inhibit ventricular remodeling and prevent heart failure in rats after myocardial infarction by regulating Nrf2/BNIP3 pathway. Methods The model of heart failure after myocardial infarction was established by left coronary artery ligation in rats. Two weeks after modeling, all rats were randomly divided into model group, LGZGD group, and captopril group. Meanwhile sham operation group was set up. The rats were given continuous intragastric administration with drug or distilled water for 28 days, once a day. The behavioral signs of rats in each group were observed. The cardiac function of rats in each group was examined by echocardiography. Serum BNP and NT-ProBNP content were detected by enzyme -linked immunoassay; The changes of myocardial his-topathological and collagen fibers in rats were detected using sirius staining. The contents of oxidative stress index including ROS, SOD in myocardial tissue of rats in each group were observed by DCFH-DA fluorescent probe and Enzyme-linked immunoassay. The ultra-structure of mitochondria was observed by transmission electron microscopy. Expressions of apoptotic proteins ( mitochondrial CytC, cytoplasmic CytC) were detected by Western blot. Expression of proteins related to the Nrf2/BNIP3 pathway were examined by immunofluorescence and Western blot. Results LGZGD could significantly improve the cardiac function of rats, reduce the contents of BNP and NT-ProBNP, inhibit the excessive deposition of collagen in myocardial interstiti-um, reduce ROS, increase the content of SOD, improve mitochondrial structure damage, up-regulate the expression of Nrf2 and nuclear translocation, and reduce the expression of BNIP3. Conclusions LGZGD can inhibit the ventricular remodeling and prevent the occurrence of heart failure after myocardial infarction. Its pharmacological effects are mainly related to regulating the Nrf2/BNIP3 pathway, activating Nrf2, promoting its nuclear transfer, and further down-regulating BNIP3, protecting mitochondrial function, and reducing cardiomyocyte apoptosis.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-980731

RESUMO

OBJECTIVE@#To observe the impacts of acupuncture on depressive mood and sleep quality in patients with comorbid mild-to-moderate depressive disorder and insomnia, and explore its effect mechanism.@*METHODS@#A total of 60 patients with comorbid mild-to-moderate depressive disorder and insomnia were randomly divided into an observation group (30 cases, 1 case dropped off) and a control group (30 cases, 2 cases dropped off). In the observation group, acupuncture and low frequency repeated transcranial magnetic stimulation (rTMS) were combined for the intervention. Acupuncture was applied to Baihui (GV 20), Yintang (GV 24+), Neiguan (PC 6) and Yanglingquan (GB 34), etc., the needles were retained for 30 min; and the intradermal needles were embedded at Xinshu (BL 15) and Danshu (BL 19) for 2 days. After acupuncture, the rTMS was delivered at the right dorsolateral prefrontal cortex (R-DLPFC), with 1 Hz and 80% of movement threshold, lasting 30 min in each treatment. In the control group, the sham-acupuncture was adopted, combined with low frequency rTMS. The acupoint selection and manipulation were the same as the observation group. In the two groups, acupuncture was given once every two days, 3 times weekly; while, rTMS was operated once daily, for consecutive 5 days a week. The duration of treatment consisted of 4 weeks. Hamilton depression scale-17 (HAMD-17) and Pittsburgh sleep quality index (PSQI) scores were observed before and after treatment, as well as 1 month after the treatment completion (follow-up period) separately. Besides, the levels of nerve growth factor (BDNF) and γ-aminobutyric acid (GABA) in the serum were detected before and after treatment in the two groups.@*RESULTS@#After treatment and in follow-up, the HAMD-17 scores were lower than those before treatment in the two groups (P<0.05), and the scores in the observation group were lower than the control group (P<0.05). After treatment, the total scores and the scores of each factor of PSQI were reduced in the two groups in comparison with those before treatment except for the score of sleep efficiency in the control group (P<0.05); the total PSQI score and the scores for sleep quality, sleep latency, sleep efficiency and daytime dysfunction in the observation group were all lower than those in the control group (P<0.05). In the follow-up, except for the scores of sleep duration and sleep efficiency in the control group, the total PSQI score and the scores of all the other factors were reduced compared with those before treatment in the two groups (P<0.05); the total PSQI score and the scores of sleep quality, sleep latency, sleep duration, sleep efficiency and daytime dysfunction in the observation group were lower than the control group (P<0.05). After treatment, the levels of serum BDNF and GABA were increased in comparison with those before treatment in the observation group (P<0.05), and the level of serum BDNF was higher than that in the control group (P<0.05).@*CONCLUSION@#Acupuncture relieves depressive mood and improves sleep quality in patients with comorbid mild-to-moderate depressive disorder and insomnia. The effect mechanism may be related to the regulation of BDNF and GABA levels and the promotion of brain neurological function recovery.


Assuntos
Humanos , Distúrbios do Início e da Manutenção do Sono/terapia , Estimulação Magnética Transcraniana , Fator Neurotrófico Derivado do Encéfalo , Resultado do Tratamento , Terapia por Acupuntura , Pontos de Acupuntura , Ácido gama-Aminobutírico , Transtorno Depressivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...