Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37443950

RESUMO

The aim of the present study was to assess the effects of the low level of Schizochytrium limacinum marine algae (daily 5 g per animal) on the milk, cheese, and whey composition; fatty acid profile of milk and cheese; and the sensory profile of goat milk using an e-nose device. Thirty Alpine goats were randomly divided into two groups: the control group (C, n = 15)-fed grass with daily 600 g concentrate and the experimental group (MA, n = 15) who received the same forage and concentrate supplemented with 5 g/head/day marine algae. Animals were kept indoors and the investigation period lasted 52 days, including the first six weeks as the period of adaptation and the last 10 days as the treatment period. During the adaptation period, bulk milk samples from each group were collected once a week (0, 7, 14, 21, 28, 35, and 42 d), while during the treatment period (10 days), bulk milk samples from each group were taken every day, and cheese samples were processed from bulk milk each day from both groups. Marine algae supplementation had no negative effect on milk composition. In contrast, the marine algae inclusion significantly elevated the fat and protein content of whey and the protein content of cheese, as well as the recovery of fat and protein in the curd, while increasing the cheeses' moisture content on a fat-free basis. The marine algae supplementation significantly increased the docosahexaenoic acid (DHA) and the rumenic acid (CLA c9t11) concentrations and decreased the n-6/n-3 ratio in the milk and cheese. There were no significant differences between the C and the MA group with regard to the sensory profiles of the milk. It can be concluded that the milk obtained from goats given daily supplementation of 5g of MA has a fatty acid profile more beneficial to human health, without any negative effects on the milk's aromatic components.

2.
Plants (Basel) ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299162

RESUMO

In nature conservation today, there is a global problem with the aggressive expansion of invasive plant species and the conservation of valuable grassland vegetation. Based on this, the following question has been formed: Is the domestic water buffalo (Bubalus bubalis) appropriate for managing various habitat types? How does grazing by water buffalo (Bubalus bubalis) affect on grassland vegetation? This study was carried out in four areas of Hungary. One of the sample areas was in the Mátra Mountains, on dry grassland areas where grazing had been applied for two, four and six years. The other sample areas were in the Zámolyi Basin, where wet fens with a high risk of Solidago gigantea and in a typic Pannonian dry grassland were investigated. In all areas, grazing was carried out with domestic water buffalo (Bubalus bubalis). During the study, we carried out a coenological survey, examining the change of cover of plant species, their feed values and the biomass of the grassland. According to the results, both the number and cover of economically important grasses (from 28% to 34.6%) and legumes (from 3.4% to 25.4%) increased in Mátra as well as the high proportion of shrubs (from 41.8% to 4.4%) shifted toward grassland species. In the areas of the Zámolyi Basin, invasive Solidago has been suppressed completely, the pasture has been converted completely (from 16% to 1%) and the dominant species has become Sesleria uliginosa. Thus, we have found that grazing with buffalo is suitable as a habitat management method in both dry grasslands and wet grasslands. Therefore, in addition to its effectiveness in the control of Solidago gigantea, grazing with buffalo is successful in both nature conservation and economic aspects of grassland vegetation.

3.
Plants (Basel) ; 11(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35336646

RESUMO

This article evaluates the three-year vegetation dynamics of a species rich, protected steppe grassland on loess where no grazing occurred for decades at Bicske, Central Hungary. A detailed coenological survey of vascular vegetation was conducted in four permanent plots of 16 m2 each from 2018 to 2020. Raunkiaer's life-forms, distribution range, and thousand-seed weight of species were evaluated. Shannon diversity and turnover rates for the species and the vegetation were also determined for each plot. In total, 108 vascular plant species were detected. The results indicate grassland stability when plant traits spectra were based on species presence data, but directional change if species cover values were used to weight trait categories. During the three years of the study, chamaephytes decreased and woody species increased their contribution for the Raunkiaer's life-forms, while the cosmopolitan group has steadily lost its significance for distribution range types. Shannon diversity varied between 2.46 and 3.18 among plots (based on natural logarithm) and remained statistically unchanged through time. Average species turnover rates were 14.18% for 2018/19 and 17.52% for 2019/20, whereas corresponding values for vegetation turnover rates were 25.83% and 23.28%. Vegetation turnover rate was significantly higher than the species turnover rate.

4.
Ecol Evol ; 8(20): 10326-10335, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397469

RESUMO

In the Palaearctic steppe zone, overgrazing was identified as one of the key drivers of declining grassland biodiversity, which underlines the necessity of the functional evaluation of increased grazing pressure on grassland vegetation. We tested the following hypotheses: (a) The effect of grazing intensity on species and functional diversity is strongly dependent on grassland type. (b) The magnitude of diet selectivity of grazers decreases with increasing grazing intensity. (c) Increasing grazing intensity increases evenness and functional evenness of the subjected grasslands. We analyzed vegetation patterns in four types of grasslands (Dry alkali short-grass steppes, Dry loess steppes, Non-alkali wet and Alkali wet grasslands) along an intensity gradient of beef cattle grazing at 73 sites in Hungary. Species richness, Shannon diversity, evenness, and four leaf traits were analyzed. We calculated community-weighted means for each single trait, and multi-trait functional richness, functional evenness, and divergence for all leaf traits. All species and functional diversity metrics were significantly affected by the grassland type, except leaf dry matter content. The effect of interaction between grazing intensity and grassland type was also significant for functional richness, functional evenness, community-weighted means of leaf area, and for species richness and evenness. An upward trend of specific leaf area was detected in all grasslands with the highest scores for the overgrazed sites, but the change was also grassland type dependent. The detected trend suggests that with increased intensity the overall selectivity of grazing decreased. We found that evenness was affected but functional evenness was not affected by grazing intensity. Functional evenness scores were more related to the grassland type than to changes in grazing intensity, and displayed a high variability. We stress that one-size-fits-all strategies cannot be recommended and actions should be fine-tuned at least at the level of grassland type.

5.
Sci Rep ; 7(1): 12034, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931871

RESUMO

Timing of flowering is a critical component of community assembly, but how plant traits respond to heterogeneity of resources has been identified mostly through observations of spatial variations. Thus, we performed a trait-based phenological study in sub-Mediterranean grasslands to assess the importance of temporal variation of resources in the species assemblage processes. We found that early flowering species have traits allowing for slow resource acquisition and storage but rapid growth rate. Instead, mid- and late-flowering species exhibited sets of strategies devoted to minimizing water loss by evapotranspiration or aimed at maximizing the species' competitive ability, thanks to slow growth rate and more efficient resource acquisition, conservation and use. Our findings were consistent with the fluctuation niche theory. We observed that the amplitude of the environmental fluctuations influences the type and number of strategies positively filtered by the system. In fact, in the most productive grasslands, we observed the highest number of indicator trait states reflecting strategies devoted to the storage of resources and competition for light. Results seem also indicate that temporal variation of resources plays a role in trait differentiation and richness within a plant community, filtering traits composition of grasslands in the same direction, as formerly proved for spatial heterogeneity of resources.

6.
Virchows Arch ; 464(5): 603-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682564

RESUMO

Cell replication integrates aberrations of cell cycle regulation and diverse upstream pathways which all can contribute to melanoma development and progression. In this study, cell cycle regulatory proteins were detected in situ in benign and malignant melanocytic tumors to allow correlation of major cell cycle fractions (G1, S-G2, and G2-M) with melanoma evolution. Dysplastic nevi expressed early cell cycle markers (cyclin D1 and cyclin-dependent kinase 2; Cdk2) significantly more (p < 0.05) than common nevi. Post-G1 phase markers such as cyclin A, geminin, topoisomerase IIα (peaking at S-G2) and aurora kinase B (peaking at G2-M) were expressed in thin (≤1 mm) melanomas but not in dysplastic nevi, suggesting that dysplastic melanocytes engaged in the cell cycle do not complete replication and remain arrested in G1 phase. In malignant melanomas, the expression of general and post-G1 phase markers correlated well with each other implying negligible cell cycle arrest. Post-G1 phase markers and Ki67 but none of the early markers cyclin D1, Cdk2 or minichromosome maintenance protein 6 (Mcm6) were expressed significantly more often in thick (>1 mm) than in thin melanomas. Marker expression did not differ between metastatic melanomas and thick melanomas, with the exception of aurora kinase A of which the expression was higher in metastatic melanomas. Combined detection of cyclin A (post-G1 phase) with Mcm6 (replication licensing) and Ki67 correctly classified thin melanomas and dysplastic nevi in 95.9 % of the original samples and in 93.2 % of cross-validated grouped cases at 89.5 % sensitivity and 92.6 % specificity. Therefore, cell cycle phase marker detection can indicate malignancy in early melanocytic lesions and accelerated cell cycle progression during vertical melanoma growth.


Assuntos
Biomarcadores Tumorais/análise , Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Síndrome do Nevo Displásico/diagnóstico , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Adolescente , Adulto , Proteínas de Ciclo Celular/análise , Criança , Diagnóstico Diferencial , Síndrome do Nevo Displásico/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Neoplasias Cutâneas/metabolismo , Análise Serial de Tecidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...