Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Atmos ; 19(227): 1-13, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37590244

RESUMO

Reduced-form modeling approaches are an increasingly popular way to rapidly estimate air quality and human health impacts related to changes in air pollutant emissions. These approaches reduce computation time by making simplifying assumptions about pollutant source characteristics, transport and chemistry. Two reduced form tools used by the Environmental Protection Agency in recent assessments are source apportionment-based benefit per ton (SA BPT) and source apportionment-based air quality surfaces (SABAQS). In this work, we apply these two reduced form tools to predict changes in ambient summer-season ozone, ambient annual PM2.5 component species and monetized health benefits for multiple sector-specific emission control scenarios: on-road mobile, electricity generating units (EGUs), cement kilns, petroleum refineries, and pulp and paper facilities. We then compare results against photochemical grid and standard health model-based estimates. We additionally compare monetized PM2.5 health benefits to values derived from three reduced form tools available in the literature: the Intervention Model for Air Pollution (InMAP), Air Pollution Emission Experiments and Policy Analysis (APEEP) version 2 (AP2) and Estimating Air pollution Social Impact Using Regression (EASIUR). Ozone and PM2.5 changes derived from SABAQS for EGU scenarios were well-correlated with values obtained from photochemical modeling simulations with spatial correlation coefficients between 0.64 and 0.89 for ozone and between 0.75 and 0.94 for PM2.5. SABAQS ambient ozone and PM2.5 bias when compared to photochemical modeling predictions varied by emissions scenario: SABAQS PM2.5 changes were overpredicted by up to 46% in one scenario and underpredicted by up to 19% in another scenario; SABAQS seasonal ozone changes were overpredicted by 34% to 83%. All tools predicted total PM2.5 benefits within a factor of 2 of the full-form predictions consistent with intercomparisons of reduced form tools available in the literature. As reduced form tools evolve, it is important to continue periodic comparison with comprehensive models to identify systematic biases in estimating air pollution impacts and resulting monetized health benefits.

2.
Environ Sci Technol ; 57(29): 10708-10720, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37437161

RESUMO

Particulate matter air pollution is a leading cause of global mortality, particularly in Asia and Africa. Addressing the high and wide-ranging air pollution levels requires ambient monitoring, but many low- and middle-income countries (LMICs) remain scarcely monitored. To address these data gaps, recent studies have utilized low-cost sensors. These sensors have varied performance, and little literature exists about sensor intercomparison in Africa. By colocating 2 QuantAQ Modulair-PM, 2 PurpleAir PA-II SD, and 16 Clarity Node-S Generation II monitors with a reference-grade Teledyne monitor in Accra, Ghana, we present the first intercomparisons of different brands of low-cost sensors in Africa, demonstrating that each type of low-cost sensor PM2.5 is strongly correlated with reference PM2.5, but biased high for ambient mixture of sources found in Accra. When compared to a reference monitor, the QuantAQ Modulair-PM has the lowest mean absolute error at 3.04 µg/m3, followed by PurpleAir PA-II (4.54 µg/m3) and Clarity Node-S (13.68 µg/m3). We also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R2: 0.97, 0.94, 0.96; mean absolute error: 0.56, 0.80, and 0.68 µg/m3 for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based models do not perform well when correcting data outside the range of the colocation training. Therefore, we used Gaussian Mixture Regression to correct data from the network of 17 Clarity Node-S monitors deployed around Accra, Ghana, from 2018 to 2021. We find that the network daily average PM2.5 concentration in Accra is 23.4 µg/m3, which is 1.6 times the World Health Organization Daily PM2.5 guideline of 15 µg/m3. While this level is lower than those seen in some larger African cities (such as Kinshasa, Democratic Republic of the Congo), mitigation strategies should be developed soon to prevent further impairment to air quality as Accra, and Ghana as a whole, rapidly grow.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Gana , Monitoramento Ambiental , República Democrática do Congo , Material Particulado/análise , Poluição do Ar/análise
3.
Data Brief ; 28: 104886, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872009

RESUMO

Policy analysts and researchers often use models to translate expected emissions changes from pollution control policies to estimates of air pollution changes and resulting changes in health impacts. These models can include both photochemical Eulerian grid models or reduced complexity models; these latter models make simplifying assumptions about the emissions-to-air quality relationship as a means of reducing the computational time needed to simulate air quality. This manuscript presents a new database of photochemical- and reduced complexity-modelled changes in annual average particulate matter with aerodynamic diameter less than 2.5 µm and associated health effects and economic values for five case studies representing different emissions control scenarios. The research community is developing an increasing number of reduced complexity models as lower-cost and more expeditious alternatives to full form Eulerian photochemical grid models such as the Comprehensive Air-Quality Model with eXtensions (CAMx) and the Community Multiscale Air Quality (CMAQ) model. A comprehensive evaluation of reduced complexity models can demonstrate the extent to which these tools capture complex chemical and physical processes when representing emission control options. Systematically comparing reduced complexity model predictions to benchmarks from photochemical grid models requires a consistent set of input parameters across all systems. Developing such inputs is resource intensive and consequently the data that we have developed and shared (https://github.com/epa-kpc/RFMEVAL) provide a valuable resource for others to evaluate reduced complexity models. The dataset includes inputs and outputs representing 5 emission control scenarios, including sector-based regulatory policy scenarios focused on on-road mobile sources and electrical generating units (EGUs) as well as hypothetical across-the-board reductions to emissions from cement kilns, refineries, and pulp and paper facilities. Model inputs, outputs, and run control files are provided for the Air Pollution Emission Experiments and Policy Analysis (APEEP) version 2 and 3, Intervention Model for Air Pollution (InMAP), Estimating Air pollution Social Impact Using Regression (EASIUR), and EPA's source apportionment benefit-per-ton reduced complexity models. For comparison, photochemical grid model annual average PM2.5 output is provided for each emission scenario. Further, inputs are also provided for the Environmental Benefits and Mapping Community Edition (BenMAP-CE) tool to generate county level health benefits and monetized health damages along with output files for benchmarking and intercomparison. Monetized health impacts are also provided from EASIUR and APEEP which can provide these outside the BenMAP-CE framework. The database will allow researchers to more easily compare reduced complexity model predictions against photochemical grid model predictions.

4.
Geohealth ; 3(5): 127-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276080

RESUMO

The U.S. Southwest is projected to experience increasing aridity due to climate change. We quantify the resulting impacts on ambient dust levels and public health using methods consistent with the Environmental Protection Agency's Climate Change Impacts and Risk Analysis framework. We first demonstrate that U.S. Southwest fine (PM2.5) and coarse (PM2.5-10) dust levels are strongly sensitive to variability in the 2-month Standardized Precipitation-Evapotranspiration Index across southwestern North America. We then estimate potential changes in dust levels through 2099 by applying the observed sensitivities to downscaled meteorological output projected by six climate models following an intermediate (Representative Concentration Pathway 4.5, RCP4.5) and a high (RCP8.5) greenhouse gas concentration scenario. By 2080-2099 under RCP8.5 relative to 1986-2005 in the U.S. Southwest: (1) Fine dust levels could increase by 57%, and fine dust-attributable all-cause mortality and hospitalizations could increase by 230% and 360%, respectively; (2) coarse dust levels could increase by 38%, and coarse dust-attributable cardiovascular mortality and asthma emergency department visits could increase by 210% and 88%, respectively; (3) climate-driven changes in dust concentrations can account for 34-47% of these health impacts, with the rest due to increases in population and baseline incidence rates; and (4) economic damages of the health impacts could total $47 billion per year additional to the 1986-2005 value of $13 billion per year. Compared to national-scale climate impacts projected for other U.S. sectors using the Climate Change Impacts and Risk Analysis framework, dust-related mortality ranks fourth behind extreme temperature-related mortality, labor productivity decline, and coastal property loss.

5.
Environ Res ; 156: 791-800, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28501677

RESUMO

In this study, we modeled concentrations of fine particulate matter (PM2.5) and ozone (O3) attributable to precursor emissions from individual airports in the United States, developing airport-specific health damage functions (deaths per 1000t of precursor emissions) and physically-interpretable regression models to explain variability in these functions. We applied the Community Multiscale Air Quality model using the Decoupled Direct Method to isolate PM2.5- or O3-related contributions from precursor pollutants emitted by 66 individual airports. We linked airport- and pollutant-specific concentrations with population data and literature-based concentration-response functions to create health damage functions. Deaths per 1000t of primary PM2.5 emissions ranged from 3 to 160 across airports, with variability explained by population patterns within 500km of the airport. Deaths per 1000t of precursors for secondary PM2.5 varied across airports from 0.1 to 2.7 for NOx, 0.06 to 2.9 for SO2, and 0.06 to 11 for VOCs, with variability explained by population patterns and ambient concentrations influencing particle formation. Deaths per 1000t of O3 precursors ranged from -0.004 to 1.0 for NOx and 0.03 to 1.5 for VOCs, with strong seasonality and influence of ambient concentrations. Our findings reinforce the importance of location- and source-specific health damage functions in design of health-maximizing emissions control policies.


Assuntos
Poluição do Ar/efeitos adversos , Aeroportos , Modelos Teóricos , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Compostos de Amônio/análise , Compostos de Amônio/toxicidade , Humanos , Mortalidade , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/toxicidade , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade , Emissões de Veículos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
6.
Environ Health Perspect ; 125(3): 324-332, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27586513

RESUMO

BACKGROUND: Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM2.5) and ozone (O3). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. OBJECTIVES: In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM2.5 and O3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. METHODS: We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. RESULTS: We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM2.5. More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. CONCLUSIONS: Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324-332; http://dx.doi.org/10.1289/EHP550.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Nível de Saúde , Ozônio/análise , Material Particulado/análise , Centrais Elétricas/estatística & dados numéricos , Poluentes Atmosféricos/análise , Humanos , Estados Unidos
7.
Sci Total Environ ; 527-528: 47-55, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956147

RESUMO

Aircraft activity and airport operations can increase combustion-related air pollutant concentrations, but it is difficult to distinguish aviation emissions from traffic and other local sources. Emission inventories are uncertain and dispersion models may not capture aircraft plume complexity; ambient monitoring data require detailed statistical analyses to extract aviation signals. The goal of this study is to compare two modeling approaches including monitoring-based regression models and the EDMS/AERMOD dispersion model, informing improvements and allowing quantitation of aviation impacts on air quality through multi-pollutant sensitivity and multi-monitor fate/transport analyses. Aggregate concentration comparisons are similar, though diurnal patterns show potential weaknesses in near-field dispersion, treatment of overnight conditions, and emission inventory accuracy.


Assuntos
Poluentes Atmosféricos/análise , Aeroportos , Monitoramento Ambiental/métodos , Modelos Químicos , Óxidos de Nitrogênio/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Los Angeles , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...