Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(24): e202304367, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38377169

RESUMO

Carbonic Anhydrases (CAs) have been a target for de novo protein designers due to the simplicity of the active site and rapid rate of the reaction. The first reported mimic contained a Zn(II) bound to three histidine imidazole nitrogens and an exogenous water molecule, hence closely mimicking the native enzymes' first coordination sphere. Co(II) has served as an alternative metal to interrogate CAs due to its d7 electronic configuration for more detailed solution characterization. We present here the Co(II) substituted [Co(II)(H2O/OH-)]N(TRIL2WL23H)3 n+ that behaves similarly to native Co(II) substituted human-CAs. Like the Zn(II) analogue, the cobalt-derivative at slightly basic pH is incapable of hydrolyzing p-nitrophenylacetate (pNPA); however, as the pH is increased a significant activity develops, which at pH values above 10 eventually yields a catalytic efficiency that exceeds that of the [Zn(II)(OH-)]N(TRIL2WL23H)3 + peptide complex. X-ray absorption analysis is consistent with an octahedral species at pH 7.5 that converts to a 5-coordinate species by pH 11. UV-vis spectroscopy can monitor this transition, giving a pKa for the conversion of 10.3. We assign this conversion to the formation of a 5-coordinate Co(II)(Nimid)3(OH)(H2O) species. The pH dependent kinetic analysis indicates the maximal rate (kcat), and thus the catalytic efficiency (kcat/Km), follow the same pH profile as the spectroscopic conversion to the pentacoordinate species. This correlation suggests that the chemically irreversible ester hydrolysis corresponds to the rate determining process.


Assuntos
Anidrases Carbônicas , Cobalto , Esterases , Zinco , Zinco/química , Cobalto/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio , Humanos , Esterases/química , Esterases/metabolismo , Domínio Catalítico , Hidrólise , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cinética , Catálise , Nitrofenóis/química , Nitrofenóis/metabolismo
2.
J Phys Chem B ; 128(6): 1428-1437, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301132

RESUMO

Polarized time-resolved X-ray absorption spectroscopy at the Co K-edge is used to probe the excited-state dynamics and photolysis of base-off methylcobalamin and the excited-state structure of base-off adenosylcobalamin. For both molecules, the final excited-state minimum shows evidence for an expansion of the cavity around the Co ion by ca. 0.04 to 0.05 Å. The 5-coordinate base-off cob(II)alamin that is formed following photodissociation has a structure similar to that of the 5-coordinate base-on cob(II)alamin, with a ring expansion of 0.03 to 0.04 Å and a contraction of the lower axial bond length relative to that in the 6-coordinate ground state. These data provide insights into the role of the lower axial ligand in modulating the reactivity of B12 coenzymes.


Assuntos
Coenzimas , Vitamina B 12 , Espectroscopia por Absorção de Raios X , Vitamina B 12/química , Fotólise
3.
J Am Chem Soc ; 145(25): 14070-14086, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327324

RESUMO

Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kß and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.

4.
Methods Enzymol ; 669: 303-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644178

RESUMO

Time resolved spectroscopy provides unique insight into the structure and function of cobalamins. In these experiments, the cobalamin is initially excited by a short "pump" pulse in the UV-visible region and then characterized at some later time using a short "probe" pulse. The emphasis in this chapter is on both UV-visible and X-ray probe pulses, with a particular focus on the unique information provided by the latter. The principles of time-resolved spectroscopy are reviewed, with an emphasis on ultrafast measurements (time scales less than ~10ps) to characterize short-lived cobalamin excited states. Several practical considerations are discussed, with a focus on the technical details that are necessary to obtain high quality, interpretable data. These include sample delivery, polarization, and excitation power. Some of the theoretical approaches to interpreting data are discussed.


Assuntos
Eletrônica , Vitamina B 12 , Análise Espectral , Fatores de Tempo , Raios X
5.
J Struct Biol ; 214(2): 107855, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390463

RESUMO

Protein 3D structure can be remarkably robust to the accumulation of mutations during evolution. On the other hand, sometimes a single amino acid substitution can be sufficient to generate dramatic and completely unpredictable structural consequences. In an attempt to rationally alter the preferences for the metal ion at the active site of a member of the Iron/Manganese superoxide dismutase family, two examples of the latter phenomenon were identified. Site directed mutants of SOD from Trichoderma reesei were generated and studied crystallographically together with the wild type enzyme. Despite being chosen for their potential impact on the redox potential of the metal, two of the mutations (D150G and G73A) in fact resulted in significant alterations to the protein quaternary structure. The D150G mutant presented alternative inter-subunit contacts leading to a loss of symmetry of the wild type tetramer, whereas the G73A mutation transformed the tetramer into an octamer despite not participating directly in any of the inter-subunit interfaces. We conclude that there is considerable intrinsic plasticity in the Fe/MnSOD fold that can be unpredictably affected by single amino acid substitutions. In much the same way as phenotypic defects at the organism level can reveal much about normal function, so too can such mutations teach us much about the subtleties of protein structure.


Assuntos
Manganês , Superóxido Dismutase , Substituição de Aminoácidos , Ferro/química , Manganês/química , Conformação Proteica , Superóxido Dismutase/química , Superóxido Dismutase/genética
6.
Inorg Chem ; 61(12): 5084-5091, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35286080

RESUMO

Long interspersed nuclear elements-1 (L1) are autonomous retrotransposons that encode two proteins in different open reading frames (ORF1 and ORF2). The ORF1p, which may be an RNA binding and chaperone protein, contains a three-stranded coiled coil (3SCC) domain that facilitates the formation of the biologically active homotrimer. This 3SCC domain is composed of seven amino acid (heptad) repeats as found in native and designed peptides and a stammer that modifies the helical structure. Cysteine residues occur at three hydrophobic positions (2 a and 1 d sites) within this domain. We recently showed that the cysteine layers in ORF1p and model de novo designed peptides bind the toxic metalloid lead(II) with high affinities, a feature that had not been previously recognized. However, there is little understanding of how essential metal ions might interact with this metal binding domain. We have, therefore, investigated the copper(I) binding properties of analogous de novo designed 3SCCs that contain cysteine layers within the hydrophobic core. The results from UV-visible and X-ray absorption spectroscopy show that these designed peptides bind Cu(I) with high affinity in a pH-dependent manner. At pH 9, monomeric trigonal planar Cu(I)S3 centers are formed with 1 equiv of metal, while dinuclear centers form with a second equivalent of metal. At physiologic pH conditions, the dinuclear center forms cooperatively. These data suggest that ORF1p is capable of binding two copper ions to its tris(cysteine) layers. This has major implications for ORF1p coiled coil domain stability and dynamics, ultimately potentially impacting the resulting biological activity.


Assuntos
Cobre , Retroelementos , Sítios de Ligação , Humanos , Elementos Nucleotídeos Longos e Dispersos , Fases de Leitura Aberta , Ligação Proteica
7.
J Biol Inorg Chem ; 26(7): 855-862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487215

RESUMO

Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.


Assuntos
Cobre , Nitrito Redutases , Sítios de Ligação , Domínio Catalítico , Transporte de Elétrons , Nitrito Redutases/metabolismo
8.
J Am Chem Soc ; 143(37): 15271-15278, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494819

RESUMO

The human long interspersed nuclear element 1 (LINE1) has been implicated in numerous diseases and has been suggested to play a significant role in genetic evolution. Open reading frame 1 protein (ORF1p) is one of the two proteins encoded in this self-replicating mobile genetic element, both of which are essential for retrotransposition. The structure of the three-stranded coiled-coil domain of ORF1p was recently solved and showed the presence of tris-cysteine layers in the interior of the coiled-coil that could function as metal binding sites. Here, we demonstrate that ORF1p binds Pb(II). We designed a model peptide, GRCSL16CL23C, to mimic two of the ORF1p Cys3 layers and crystallized the peptide both as the apo-form and in the presence of Pb(II). Structural comparison of the ORF1p with apo-(GRCSL16CL23C)3 shows very similar Cys3 layers, preorganized for Pb(II) binding. We propose that exposure to heavy metals, such as lead, could influence directly the structural parameters of ORF1p and thus impact the overall LINE1 retrotransposition frequency, directly relating heavy metal exposure to genetic modification.


Assuntos
Desoxirribonuclease I/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Chumbo/farmacologia , Cristalografia por Raios X , Desoxirribonuclease I/genética , Escherichia coli/metabolismo , Humanos , Chumbo/química , Modelos Moleculares , Fases de Leitura Aberta , Ligação Proteica , Conformação Proteica
9.
J Phys Chem B ; 124(47): 10732-10738, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174757

RESUMO

We have used transient absorption spectroscopy in the UV-visible and X-ray regions to characterize the excited state of CarH, a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light. With visible excitation, a nanosecond-lifetime photoactive excited state is formed with unit quantum yield. The time-resolved X-ray absorption near edge structure difference spectrum of this state demonstrates that the excited state of AdoCbl in CarH undergoes only modest structural expansion around the central cobalt, a behavior similar to that observed for methylcobalamin rather than for AdoCbl free in solution. We propose a new mechanism for CarH photoreactivity involving formation of a triplet excited state. This allows the sensor to operate with high quantum efficiency and without formation of potentially dangerous side products. By stabilizing the excited electronic state, CarH controls reactivity of AdoCbl and enables slow reactions that yield nonreactive products and bypass bond homolysis and reactive radical species formation.


Assuntos
Cobalto
10.
J Am Chem Soc ; 142(38): 16334-16345, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32871076

RESUMO

The CblC and CblD chaperones are involved in early steps in the cobalamin trafficking pathway. Cobalamin derivatives entering the cytoplasm are converted by CblC to a common cob(II)alamin intermediate via glutathione-dependent alkyltransferase or reductive elimination activities. Cob(II)alamin is subsequently converted to one of two biologically active alkylcobalamins by downstream chaperones. The function of CblD has been elusive although it is known to form a complex with CblC under certain conditions. Here, we report that CblD provides a sulfur ligand to cob(II)alamin bound to CblC, forming an interprotein coordination complex that rapidly oxidizes to thiolato-cob(III)alamin. Cysteine scanning mutagenesis and EPR spectroscopy identified Cys-261 on CblD as the sulfur donor. The unusual interprotein Co-S bond was characterized by X-ray absorption spectroscopy and visualized in the crystal structure of the human CblD thiolato-cob(III)alamin complex. Our study provides insights into how cobalamin coordination chemistry could be utilized for cofactor translocation in the trafficking pathway.


Assuntos
Cobalto/metabolismo , Chaperonas Moleculares/metabolismo , Enxofre/metabolismo , Vitamina B 12/metabolismo , Cobalto/química , Modelos Moleculares , Chaperonas Moleculares/química , Enxofre/química , Vitamina B 12/química
11.
Inorg Chem ; 59(18): 13551-13560, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32893611

RESUMO

As the second most common transition metal in the human body, zinc is of great interest to research but has few viable routes for its direct structural study in biological systems. Herein, Zn valence-to-core X-ray emission spectroscopy (VtC XES) and Zn K-edge X-ray absorption spectroscopy (XAS) are presented as a means to understand the local structure of zinc in biological systems through the application of these methods to a series of biologically relevant molecular model complexes. Taken together, the Zn K-edge XAS and VtC XES provide a means to establish the ligand identity, local geometry, and metal-ligand bond lengths. Experimental results are supported by correlation with density-functional-theory-based calculations. Combining these theoretical and experimental approaches will enable future applications to protein systems in a predictive manner.


Assuntos
Sondas Moleculares/química , Zinco/química , Ligantes , Espectrometria por Raios X/métodos , Espectroscopia por Absorção de Raios X/métodos
12.
J Am Chem Soc ; 142(36): 15282-15294, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786767

RESUMO

Blue copper proteins have a constrained Cu(II) geometry that has proven difficult to recapitulate outside native cupredoxin folds. Previous work has successfully designed green copper proteins which could be tuned blue using exogenous ligands, but the question of how one can create a self-contained blue copper site within a de novo scaffold, especially one removed from a cupredoxin fold, remained. We have recently reported a red copper protein site within a three helical bundle scaffold which we later revisited and determined to be a nitrosocyanin mimic, with a CuHis2CysGlu binding site. We now report efforts to rationally design this construct toward either green or blue copper chromophores using mutation strategies that have proven successful in native cupredoxins. By rotating the metal binding site, we created a de novo green copper protein. This in turn was converted to a blue copper protein by removing an axial methionine. Following this rational sequence, we have successfully created red, green, and blue copper proteins within an alpha helical fold, enabling comparisons for the first time of their structure and function disconnected from the overall cupredoxin fold.


Assuntos
Azurina/síntese química , Cobre/química , Azurina/química , Sítios de Ligação , Técnicas Eletroquímicas , Modelos Moleculares , Espectroscopia por Absorção de Raios X
13.
Angew Chem Int Ed Engl ; 59(46): 20445-20449, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32748510

RESUMO

While many life-critical reactions would be infeasibly slow without metal cofactors, a detailed understanding of how protein structure can influence catalytic activity remains elusive. Using de novo designed three-stranded coiled coils (TRI and Grand peptides formed using a heptad repeat approach), we examine how the insertion of a three residue discontinuity, known as a stammer insert, directly adjacent to a (His)3 metal binding site alters catalytic activity. The stammer, which locally alters the twist of the helix, significantly increases copper-catalyzed nitrite reductase activity (CuNiR). In contrast, the well-established zinc-catalyzed carbonic anhydrase activity (p-nitrophenyl acetate, pNPA) is effectively ablated. This study illustrates how the perturbation of the protein sequence using non-coordinating and non-acid base residues in the helical core can perturb metalloenzyme activity through the simple expedient of modifying the helical pitch adjacent to the catalytic center.


Assuntos
Metais/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Catálise , Cinética
14.
Dalton Trans ; 49(45): 16329-16339, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432282

RESUMO

Encapsulating cobalt phthalocyanine (CoPc) within the coordinating polymer poly-4-vinylpyridine (P4VP) results in a catalyst-polymer composite (CoPc-P4VP) that selectively reduces CO2 to CO at fast rates at low overpotential. In previous studies, we postulated that the enhanced selectively for CO over H2 production within CoPc-P4VP compared to the parent CoPc complex is due to a combination of primary, secondary, and outer-coordination sphere effects imbued by the encapsulating polymer. In this work, we perform in situ electrochemical X-ray absorption spectroscopy measurements to study the oxidation state and coordination environment of Co as a function of applied potential for CoPc, CoPc-P4VP, and CoPc with an axially-coordinated py, CoPc(py). Using in situ X-ray absorption near edge structure (XANES) we provide experimental support for our previous hypothesis that Co changes from a 4-coordinate square-planar geometry in CoPc to a mostly 5-coordinate species in CoPc(py) and CoPc-P4VP. The coordination environment of CoPc-P4VP is potential-independent but pH-dependent, suggesting that the axial coordination of pyridyl groups in P4VP to CoPc is modulated by the protonation of the polymer. Finally, we show that at low potential the oxidation state of Co in the 4-coordinate CoPc is different from that in the 5-coordinate CoPc(py), suggesting that the primary coordination sphere modulates the site of reduction (metal-centered vs. ligand centered) under catalytically-relevant conditions.

15.
J Phys Chem B ; 124(1): 199-209, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31850761

RESUMO

Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.


Assuntos
Cobamidas/química , Espectroscopia por Absorção de Raios X , Luz , Conformação Molecular , Teoria Quântica , Solventes/química , Raios Ultravioleta
16.
Chemistry ; 26(1): 249-258, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710732

RESUMO

Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redox-active metal ion in their active site (Mn, Cu, Fe, Ni) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE). Rationally designed proteins with well-defined three-dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copper-binding scaffolds: H3 (His3 ), H4 (His4 ), H2 DH (His3 Asp with two His and one Asp in the same plane) and H3 D (His3 Asp with three His in the same plane) by using the scaffold of the de novo protein GRα3 D. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good CuII -bound structural mimics of Cu-only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.


Assuntos
Cobre/química , Metaloproteínas/química , Peptídeos/química , Sequência de Aminoácidos , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ensaios Enzimáticos , Metaloproteínas/metabolismo , Peptídeos/metabolismo , Estabilidade Proteica , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Temperatura , Termodinâmica
17.
J Phys Chem Lett ; 10(18): 5484-5489, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31483136

RESUMO

Polarized transient X-ray absorption near-edge structure (XANES) was used to probe the excited-state structure of a photostable B12 antivitamin (Coß-2-(2,4-difluorophenyl)-ethynylcobalamin, F2PhEtyCbl). A drop-on-demand delivery system synchronized to the LCLS X-ray free electron laser pulses was implemented and used to measure the XANES difference spectrum 12 ps following excitation, exposing only ∼45 µL of sample. Unlike cyanocobalamin (CNCbl), where the Co-C bond expands 15-20%, the excited state of F2PhEtyCbl is characterized by little change in the Co-C bond, suggesting that the acetylide linkage raises the barrier for expansion of the Co-C bond. In contrast, the lower axial Co-NDMB bond is elongated in the excited state of F2PhEtyCbl by ca. 10% or more, comparable to the 10% elongation observed for Co-NDMB in CNCbl.


Assuntos
Complexos de Coordenação/química , Modelos Moleculares , Vitamina B 12/antagonistas & inibidores , Carbono/química , Cobalto/química , Cinética , Conformação Molecular , Processos Fotoquímicos , Teoria Quântica , Termodinâmica , Raios X
18.
J Phys Chem B ; 123(28): 6042-6048, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31290669

RESUMO

We use picosecond time-resolved polarized X-ray absorption near-edge structure (XANES) measurements to probe the structure of the long-lived photoexcited state of methylcobalamin (MeCbl) and the cob(II)alamin photoproduct formed following photoexcitation of adenosylcobalamin (AdoCbl, coenzyme B12). For MeCbl, we used 520 nm excitation and a time delay of 100 ps to avoid the formation of cob(II)alamin. We find only small spectral changes in the equatorial and axial directions, which we interpret as arising from small (<∼0.05 Å) changes in both the equatorial and axial distances. This confirms expectations based on prior UV-visible transient absorption measurements and theoretical simulations. We do not find evidence for the significant elongation of the Co-C bond reported by Subramanian [ J. Phys. Chem. Lett. 2018 , 9 , 1542 - 1546 ] following 400 nm excitation. For AdoCbl, we resolve the difference XANES contributions along three unique molecular axes by exciting with both 540 and 365 nm light, demonstrating that the spectral changes are predominantly polarized along the axial direction, consistent with the loss of axial ligation. These data suggest that the microsecond "recombination product" identified by Subramanian et al. is actually the cob(II)alamin photoproduct that is produced following bond homolysis of MeCbl with 400 nm excitation. Our results highlight the pronounced advantage of using polarization-selective transient X-ray absorption for isolating structural dynamics in systems undergoing atomic displacements that are strongly correlated to the exciting optical polarization.

19.
J Am Chem Soc ; 141(19): 7765-7775, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30983335

RESUMO

Copper proteins have the capacity to serve as both redox active catalysts and purely electron transfer centers. A longstanding question in this field is how the function of histidine ligated Cu centers are modulated by δ vs ε-nitrogen ligation of the imidazole. Evaluating the impact of these coordination modes on structure and function by comparative analysis of deposited crystal structures is confounded by factors such as differing protein folds and disparate secondary coordination spheres that make direct comparison of these isomers difficult. Here, we present a series of de novo designed proteins using the noncanonical amino acids 1-methyl-histidine and 3-methyl-histidine to create Cu nitrite reductases where δ- or ε-nitrogen ligation is enforced by the opposite nitrogen's methylation as a means of directly comparing these two ligation states in the same protein fold. We find that ε-nitrogen ligation allows for a better nitrite reduction catalyst, displaying 2 orders of magnitude higher activity than the δ-nitrogen ligated construct. Methylation of the δ nitrogen, combined with a secondary sphere mutation we have previously published, has produced a new record for efficiency within a homogeneous aqueous system, improving by 1 order of magnitude the previously published most efficient construct. Furthermore, we have measured Michaelis-Menten kinetics on these highly active constructs, revealing that the remaining barriers to matching the catalytic efficiency ( kcat/ KM) of native Cu nitrite reductase involve both substrate binding ( KM) and catalysis ( kcat).


Assuntos
Biocatálise , Cobre/metabolismo , Histidina/metabolismo , Nitrito Redutases/metabolismo , Oligopeptídeos/metabolismo , Isomerismo , Metilação , Modelos Moleculares , Nitrito Redutases/química , Oligopeptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
20.
J Synchrotron Radiat ; 26(Pt 2): 497-503, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855260

RESUMO

The X-ray fluorescence data from X-ray microprobe and nanoprobe measurements must be fitted to obtain reliable elemental maps. The most common approach in many fitting programs is to initially remove a per-pixel baseline. Using X-ray fluorescence data of yeast and glial cells, it is shown that per-pixel baselines can result in significant, systematic errors in quantitation and that significantly improved data can be obtained by calculating an average blank spectrum and subtracting this from each pixel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...