Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(14): 168060, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356905

RESUMO

In 2019, we released Missense3D which identifies stereochemical features that are disrupted by a missense variant, such as introducing a buried charge. Missense3D analyses the effect of a missense variant on a single structure and thus may fail to identify as damaging surface variants disrupting a protein interface i.e., a protein-protein interaction (PPI) site. Here we present Missense3D-PPI designed to predict missense variants at PPI interfaces. Our development dataset comprised of 1,279 missense variants (pathogenic n = 733, benign n = 546) in 434 proteins and 545 experimental structures of PPI complexes. Benchmarking of Missense3D-PPI was performed after dividing the dataset in training (320 benign and 320 pathogenic variants) and testing (226 benign and 413 pathogenic). Structural features affecting PPI, such as disruption of interchain bonds and introduction of unbalanced charged interface residues, were analysed to assess the impact of the variant at PPI. The performance of Missense3D-PPI was superior to that of Missense3D: sensitivity 44 % versus 8% and accuracy 58% versus 40%, p = 4.23 × 10-16. However, the specificity of Missense3D-PPI was lower compared to Missense3D (84% versus 98%). On our dataset, Missense3D-PPI's accuracy was superior to BeAtMuSiC (p = 3.4 × 10-5), mCSM-PPI2 (p = 1.5 × 10-12) and MutaBind2 (p = 0.0025). Missense3D-PPI represents a valuable tool for predicting the structural effect of missense variants on biological protein networks and is available at the Missense3D web portal (http://missense3d.bc.ic.ac.uk).


Assuntos
Análise Mutacional de DNA , Proteínas , Software , Mutação de Sentido Incorreto , Proteínas/química , Proteínas/genética , Análise Mutacional de DNA/métodos
2.
Front Mol Biosci ; 7: 108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32613008

RESUMO

The molecular events that underpin genome segregation during bacterial cytokinesis have not been fully described. The tripartite segrosome complex that is encoded by the multiresistance plasmid TP228 in Escherichia coli is a tractable model to decipher the steps that mediate accurate genome partitioning in bacteria. In this case, a "Venus flytrap" mechanism mediates plasmid segregation. The ParG sequence-specific DNA binding protein coats the parH centromere. ParF, a ParA-type ATPase protein, assembles in a three-dimensional meshwork that penetrates the nucleoid volume where it recognizes and transports ParG-parH complexes and attached plasmids to the nucleoid poles. Plasmids are deposited at the nucleoid poles following the partial dissolution of the ParF network through a combination of localized ATP hydrolysis within the meshwork and ParG-mediated oligomer disassembly. The current study demonstrates that the conformation of the nucleotide binding pocket in ParF is tuned exquisitely: a single amino acid change that perturbs the molecular arrangement of the bound nucleotide moderates ATP hydrolysis. Moreover, this alteration also affects critical interactions of ParF with the partner protein ParG. As a result, plasmid segregation is inhibited. The data reinforce that the dynamics of nucleotide binding and hydrolysis by ParA-type proteins are key to accurate genome segregation in bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...