Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 3(1): 36, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24180644

RESUMO

: It is not exactly known why certain food proteins are more likely to sensitize. One of the characteristics of most food allergens is that they are stable to the acidic and proteolytic conditions in the digestive tract. This property is thought to be a risk factor in allergic sensitization. The purpose of the present study was to investigate the contribution of the protein structure of 2S albumin (Ber e1), a major allergen from Brazil nut, on the sensitizing capacity in vivo using an oral Brown Norway rat food allergy model. Disulphide bridges of 2S albumin were reduced and alkylated resulting in loss of protein structure and an increased pepsin digestibility in vitro. Both native 2S albumin and reduced/alkylated 2S albumin were administered by daily gavage dosing (0.1 and 1 mg) to Brown Norway rats for 42 days. Intraperitoneal administration was used as a positive control. Sera were analysed by ELISA and passive cutaneous anaphylaxis. Oral exposure to native or reduced/alkylated 2S albumin resulted in specific IgG1 and IgG2a responses whereas only native 2S albumin induced specific IgE in this model, which was confirmed by passive cutaneous anaphylaxis. This study has shown that the disruption of the protein structure of Brazil nut 2S albumin decreased the sensitizing potential in a Brown Norway rat food allergy model, whereas the immunogenicity of 2S albumin remained preserved. This observation may open possibilities for developing immunotherapy for Brazil nut allergy.

2.
J Agric Food Chem ; 53(1): 123-31, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15631518

RESUMO

The high resistance of Brazil nut 2S albumin, previously identified as an allergen, against proteolysis by pepsin was examined in this work. Although the denaturation temperature of this protein exceeds the 110 degrees C at neutral pH, at low pH a fully reversible thermal denaturation was observed at approximately 82 degrees C. The poor digestibility of the protein by pepsin illustrates the tight globular packing. Chemical processing (i.e., subsequent reduction and alkylation of the protein) was used to destabilize the globular fold. Far-UV circular dichroism and infrared spectroscopy showed that the reduced and alkylated form had lost its beta-structures, whereas the alpha-helix content was conserved. The free energy of stabilization of the globular fold of the processed protein as assessed by a guanidine titration study was only 30-40% of that of the native form. Size exclusion chromatography indicated that the heavy chain lost its globular character once separated from the native 2S albumin. The consequences of these changes in structural stability for degradation by pepsin were analyzed using gel electrophoresis and mass spectrometry. Whereas native 2S albumin was digested slowly in 1 h, the reduced and alkylated protein was digested completely within 30 s. These results are discussed in view of the potential allergenicity of Brazil nut 2S albumin.


Assuntos
Albuminas/química , Albuminas/metabolismo , Bertholletia/química , Pepsina A/metabolismo , Proteínas de Plantas , Desnaturação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Albuminas 2S de Plantas , Antígenos de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA