Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36657229

RESUMO

In comparison to most modern teleost fishes, sturgeons generally display muted stress responses. While a muted stress response appears to be ubiquitous across sturgeon species, the mechanisms unpinning this muted response have not been fully described. The objective of this study was to determine the patterns of hematological and transcriptomic change in muscle tissue following an acute high temperature stress (critical thermal maxima; CTmax) in two locally co-occurring but evolutionarily distant sturgeon species (Atlantic and shortnose sturgeon). The most striking pattern found was that Atlantic sturgeon launched a vigorous transcriptomic response at CTmax, whereas shortnose sturgeon did not. In contrast, shortnose sturgeon have significantly higher cortisol than Atlantics at CTmax, reconfirming that shortnose have a less muted cortisol stress response. Atlantic sturgeon downregulated a number of processes, included RNA creation/processing, methylation and immune processes. Furthermore, a number of genes related to heat shock proteins were differentially expressed at CTmax in Atlantic sturgeon but none of these genes were significantly changed in shortnose sturgeon. We also note that the majority of differentially expressed genes of both species are undescribed and have no known orthologues. These results suggest that, while sturgeons as a whole may show muted stress responses, individual sturgeon species likely use different inducible strategies to cope with acute high temperature stress.


Assuntos
Hidrocortisona , Transcriptoma , Animais , Peixes/metabolismo , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica
2.
Fish Physiol Biochem ; 45(3): 1167-1175, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30874954

RESUMO

The Saint John River (SJR) is home to the only Canadian population of shortnose sturgeon, Acipenser brevirostrum. Adult shortnose sturgeon routinely enter saltwater to forage, yet less is known about how juveniles cope with the associated osmoregulatory pressures. Recently, it has been shown that short-term (24 h) exposure to saltwater causes significant changes to ion and water levels in juvenile shortnose. In some species of fish, notably salmonids, it has been shown that shifts in fluid and ion levels following saltwater challenges reduce the swimming capacity. The relationship between ion concentration and swimming capacity is not well understood for sturgeon species. Our research aimed to determine whether short-term salt exposure affects swimming ability in juvenile shortnose sturgeon. Juvenile, SJR, hatchery-raised shortnose sturgeon (< 1 year old) were exposed to salinities of 0 (control), 16, or 24‰ for 24 h and then subjected to a critical swimming speed test (Ucrit) to quantify swimming ability. Following the test, the fish were weighed and blood samples were drawn to be analyzed for plasma ion and cortisol levels. While ion levels and weight loss were significantly higher in salt exposed fish, there were no significant differences in critical swimming speed or cortisol concentrations. This is in contrast to what has been observed in salmonids and Adriatic sturgeon. This suggests the hydromineral imbalance caused by moderate salt exposure is not sufficient to affect the swimming performance of shortnose sturgeon. Shortnose sturgeon are not thought to enter the saline stretches of the SJR until roughly 8 years of age, yet this research shows that much younger juveniles withstand moderate salinity for short periods, with little whole-animal ramifications.


Assuntos
Peixes/fisiologia , Salinidade , Tolerância ao Sal , Natação/fisiologia , Água/química , Animais
3.
J Fish Biol ; 84(4): 1117-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24628001

RESUMO

This study focused on the acute physiological responses to saltwater exposure in juvenile shortnose sturgeon Acipenser brevirostrum. In two separate laboratory experiments, 2 year-old A. brevirostrum were exposed to either full (32) or half-strength (16) seawater for up to 24 h. First, oxygen consumption rates were used to estimate the metabolic costs over 24 h. Secondly, blood and muscle samples were analysed at 6, 12 and 24 h for water loss, various measures of osmoregulatory status (plasma osmolality and ions) and other standard haematological variables. Juveniles exposed to full-strength seawater showed significant decreases in oxygen consumption rates during the 24 h exposure. Furthermore, seawater-exposed fish had significantly increased plasma osmolality, ions (Na(+) and Cl(-)) and a 17% decrease in total wet mass over the 24 h exposure period. To a lesser extent, increases in osmolality, ions and mass loss were observed in fish exposed to half-strength seawater but no changes to oxygen consumption. Cortisol was also significantly increased in fish exposed to full-strength seawater. While plasma protein was elevated following 24 h in full-strength seawater, haemoglobin, haematocrit and plasma glucose levels did not change with increased salinity. These results imply an inability of juvenile A. brevirostrum to regulate water and ions in full-strength seawater within 24 h. Nonetheless, no mortality occurred in any exposure, suggesting that juvenile A. brevirostrum can tolerate short periods in saline environments.


Assuntos
Peixes/fisiologia , Consumo de Oxigênio , Salinidade , Estresse Fisiológico , Animais , Glicemia/análise , Peso Corporal , Hematócrito , Hemoglobinas/análise , Hidrocortisona/sangue , Concentração Osmolar , Água do Mar , Equilíbrio Hidroeletrolítico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...