Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220183, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866383

RESUMO

The overturning circulation of the subpolar North Atlantic (SPNA) plays a fundamental role in Earth's climate variability and change. Here, we show from observations that the recent warming period since about 2016 in the eastern SPNA involves increased western boundary density at the intergyre boundary, likely due to enhanced buoyancy forcing as a response to the strong increase in the North Atlantic Oscillation since the early 2010s. As these deep positive density anomalies spread southward along the western boundary, they enhance the North Atlantic Current and associated meridional heat transport at the intergyre region, leading to increased influx of subtropical heat into the eastern SPNA. Based on the timing of this chain of events, we conclude that this recent warming phase since about 2016 is primarily associated with this observed mechanism of changes in deep western boundary density, an essential element in these interactions. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
Nat Commun ; 9(1): 1124, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555904

RESUMO

The ocean's role in global climate change largely depends on its heat transport. Therefore, understanding the oceanic meridional heat transport (MHT) variability is a fundamental issue. Prevailing observational and modeling evidence suggests that MHT variability is primarily determined by the large-scale ocean circulation. Here, using new in situ observations in the eastern subpolar North Atlantic Ocean and an eddy-resolving numerical model, we show that energetic mesoscale eddies with horizontal scales of about 10-100 km profoundly modulate MHT variability on time scales from intra-seasonal to interannual. Our results reveal that the velocity changes due to mesoscale processes produce substantial variability for the MHT regionally (within sub-basins) and the subpolar North Atlantic as a whole. The findings have important implications for understanding the mechanisms for poleward heat transport variability in the subpolar North Atlantic Ocean, a key region for heat and carbon sequestration, ice-ocean interaction, and biological productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...