Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 657: 178-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38039879

RESUMO

HYPOTHESIS: The development of gels capable to adapt and act at the interface of rough surfaces is a central topic in modern science for Cultural Heritage preservation. To overcome the limitations of solvents or polymer solutions, commonly used in the restoration practice, poly(vinyl alcohol) (PVA) "twin-chain" polymer networks (TC-PNs) have been recently proposed. The properties of this new class of gels, that are the most performing gels available for Cultural Heritage preservation, are mostly unexplored. This paper investigates how chemical modifications affect gels' structure and their rheological behavior, producing new gelled systems with enhanced and tunable properties for challenging applications, not restricted to Cultural Heritage preservation. EXPERIMENTS: In this study, the PVA-TC-PNs structural and functional properties were changed by functionalization with sebacic acid into a new class of TC-PNs. Functionalization affects the porosity and nanostructure of the network, changing its uptake/release of fluids and favoring the uptake of organic solvents with various polarity, a crucial feature to boost the versatility of TC-PNs in practical applications. FINDINGS: The functionalized gels exhibited unprecedented performances during the cleaning of contemporary paintings from the Peggy Gugghenheim collection (Venice), whose restoration with traditional solvents and swabs would be difficult to avoid possible disfigurements to the painted layers. These results candidate the functionalized TC-PNs as a new, highly promising class of gels in art preservation.

2.
J Colloid Interface Sci ; 638: 363-374, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746054

RESUMO

HYPOTHESIS: Organic solvents are often used for cleaning highly water-sensitive artifacts in modern/contemporary art. Due to the toxicity of most solvents, confining systems must be formulated to use these fluids in a safe and controlled way. We propose here castor oil (CO) organogels, obtained thorough cost-effective sustainable polyurethane crosslinking. This methodology is complementary to previously demonstrated hydrogels, when conservators opt for organic solvents over aqueous formulations. EXPERIMENTS: The gels were characterized via Small-angle Neutron Scattering and rheology before and after swelling in two organic solvents commonly adopted in cleaning paintings. The removal of a photo-aged acrylic-ketonic varnish was evaluated under visible and ultraviolet light, and with FTIR 2D imaging. FINDINGS: The new gels are dry systems that can be easily stored and loaded with solvents before use. Their nanoscale organization, viscoelasticity and cleaning action are controlled changing the amount of crosslinking, the polymeric backbone, and the loaded solvents. The fluids are confined in the nanosized polymeric mesh of the gels, which are highly retentive, granting controlled release over delicate paint layers, and transparent, allowing monitoring of the cleaning process. These features, along with their sustainable synthesis, candidate the CO organogels as feasible solutions for cultural heritage preservation, expanding the palette of advanced tools for conservators over traditional thickeners.

3.
Sci Adv ; 8(26): eabo4221, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767625

RESUMO

Correlative Brillouin and Raman microspectroscopy (BRaMS) is applied for the in situ monitoring of the chemical and physical changes of linseed oil during polymerization. The viscoelastic properties of the drying oil throughout the phase transition were determined by Brillouin light scattering (BLS) and joined to the Raman spectroscopic information about the chemical process responsible for the oil hardening. A comparative study was then performed on an oil mock-up containing ZnO, one of the most common white pigments used in cultural heritage. The intriguing outcomes open new research perspectives for a deeper comprehension of the processes leading to the conversion of a fluid binder into a dry adhering film. The description of both chemical and structural properties of the polymeric network and their evolution are the basis for a better understanding of oil painting degradation. Last, as a feasibility test, BRaMS was applied to study a precious microfragment from J. Pollock's masterpiece Alchemy.

4.
Proc Natl Acad Sci U S A ; 117(13): 7011-7020, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32152095

RESUMO

Conservation of our cultural heritage is fundamental for conveying to future generations our culture, traditions, and ways of thinking and behaving. Cleaning art, in particular modern/contemporary paintings, with traditional tools could be risky and impractical, particularly on large collections of important works to be transferred to future generations. We report on advanced cleaning systems, based on twin-chain polymer networks made of poly(vinyl alcohol) (PVA) chains, semiinterpenetrated (semi-IPN) with PVA of lower molecular weight (L-PVA). Interpenetrating L-PVA causes a change from gels with oriented channels to sponge-like semi-IPNs with disordered interconnected pores, conferring different gel (and solvent) dynamics. These features grant residue-free, time efficient cleaning capacity and effective dirt capture, defeating risks for the artifact, making possible a safer treatment of important collections, unconceivable with conventional methods. We report as an example the conservation of Jackson Pollock's masterpieces, cleaned in a controlled way, safety and selectivity with unprecedented performance.

5.
Anal Chem ; 89(2): 1283-1289, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28035811

RESUMO

Protrusions, efflorescence, delamination, and opacity decreasing are severe degradation phenomena affecting oil paints with zinc oxide, one of the most common white pigments of the 20th century. Responsible for these dramatic alterations are the Zn carboxylates (also known as Zn soaps) originated by the interaction of the pigment and the fatty acids resulting from the hydrolysis of glycerides in the oil binding medium. Despite their widespread occurrence in paintings and the growing interest of the scientific community, the process of formation and evolution of Zn soaps is not yet fully understood. In this study micro-attenuated total reflection (ATR)-FT-IR spectroscopic imaging was required for the investigation at the microscale level of the nature and distribution of Zn soaps in the painting Alchemy by J. Pollock (1947, Peggy Guggenheim Collection, Venice) and for comparison with artificially aged model samples. For both actual samples and models, the role of AlSt(OH)2, a jellifying agent commonly added in 20th century paint tube formulations, proved decisive for the formation of zinc stearate-like (ZnSt2) soaps. It was observed that ZnSt2-like soaps first form around the added AlSt(OH)2 particles and then eventually grow within the whole painting stratigraphy as irregularly shaped particles. In some of the Alchemy samples, and diversely from the models, a peculiar distribution of ZnSt2 aggregates arranged as rounded and larger particles was also documented. Notably, in one of these samples, larger agglomerates of ZnSt2 expanding toward the support of the painting were observed and interpreted as the early stage of the formation of internal protrusions. Micro-ATR-FT-IR spectroscopic imaging, thanks to a very high chemical specificity combined with high spatial resolution, was proved to give valuable information for assessing the conservation state of irreplaceable 20th century oil paintings, revealing the chemical distribution of Zn soaps within the paint stratigraphy before their effect becomes disruptive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...