Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(22)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429057

RESUMO

Strong evidence indicates that amyloid beta (Aß) inflicts its toxicity in Alzheimer's disease (AD) by promoting uncontrolled elevation of cytosolic Ca2+ in neurons. We have previously shown that synthetic Aß42 oligomers stimulate abnormal intracellular Ca2+ release from the endoplasmic reticulum stores, suggesting that a similar mechanism of Ca2+ toxicity may be common to the endogenous Aßs oligomers. Here, we use human postmortem brain extracts from AD-affected patients and test their ability to trigger Ca2+ fluxes when injected intracellularly into Xenopus oocytes. Immunological characterization of the samples revealed the elevated content of soluble Aß oligomers only in samples from AD patients. Intracellular injection of brain extracts from control patients failed to trigger detectable changes in intracellular Ca2+. Conversely, brain extracts from AD patients triggered Ca2+ events consisting of local and global Ca2+ fluorescent transients. Pre-incubation with either the conformation-specific OC antiserum or caffeine completely suppressed the brain extract's ability to trigger cytosolic Ca2+ events. Computational modeling suggests that these Ca2+ fluxes may impair cells bioenergetic by affecting ATP and ROS production. These results support the hypothesis that Aß oligomers contained in neurons of AD-affected brains may represent the toxic agents responsible for neuronal malfunctioning and death associated with the disruption of Ca2+ homeostasis.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Encéfalo/metabolismo , Metabolismo Energético
2.
Nat Commun ; 13(1): 5308, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130946

RESUMO

The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Doença de Alzheimer/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Inibidores da Colinesterase/metabolismo , Método Duplo-Cego , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Nat Neurosci ; 25(6): 688-701, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654956

RESUMO

Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aß/APP-ßCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aß-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar ß-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Placa Amiloide/metabolismo
4.
Methods Mol Biol ; 2293: 273-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453725

RESUMO

The endocytic pathway is a system of dynamically communicating vesicles, known as early endosomes, that internalize, sort, and traffic nutrients, trophic factors, and signaling molecules to sites throughout the cell. In all eukaryotic cells, early endosome functions are regulated by Rab5 activity, dependent upon its binding to GTP, whereas Rab5 bound to GDP represents the biologically inactive form. An increasing number of neurodegenerative diseases are associated with endocytic dysfunction and, in the case of Alzheimer's disease (AD) and Down syndrome (DS), an early appearing highly characteristic reflection of endocytic pathway dysfunction is an abnormal enlargement of Rab5 positive endosomes. In AD and DS, endosome enlargement accompanying accelerated endocytosis and fusion, upregulated transcription of endocytosis-related genes, and aberrant signaling by endosomes are caused by pathological Rab5 overactivation. In this chapter, we describe a battery of methods that have been used to assess Rab5 activation in models of AD/DS and are applicable to other cell and animal disease models. These methods include (1) fluorescence recovery after photobleaching (FRAP) assay; (2) quantitative measurement of endosome size by light, fluorescence and electron microscopy; (3) detection of GTP-Rab5 by in situ immunocytochemistry in vitro and ex vivo; (4) immunoprecipitation and GTP-agarose pull-down assay; (5) biochemical detection of Rab5 in endosome-enriched subcellular fractions obtained by OptiPrep™ density gradient centrifugation of mouse brain.


Assuntos
Proteínas rab5 de Ligação ao GTP/metabolismo , Doença de Alzheimer , Animais , Síndrome de Down , Endocitose , Endossomos/metabolismo , Guanosina Trifosfato , Camundongos , Proteínas rab5 de Ligação ao GTP/genética
5.
Cell Rep ; 33(8): 108420, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238112

RESUMO

Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-ß secretase cleaved C-terminal fragment (APP-ßCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-ßCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3ß. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from ß-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.


Assuntos
Doença de Alzheimer/genética , Endossomos/metabolismo , Doenças Neurodegenerativas/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Doenças Neurodegenerativas/fisiopatologia
6.
Autophagy ; 15(3): 543-557, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30269645

RESUMO

Autophagy-lysosome pathway (ALP) disruption is considered pathogenic in multiple neurodegenerative diseases; however, current methods are inadequate to investigate macroautophagy/autophagy flux in brain in vivo and its therapeutic modulation. Here, we describe a novel autophagy reporter mouse (TRGL6) stably expressing a dual-fluorescence-tagged LC3 (tfLC3, mRFP-eGFP-LC3) by transgenesis selectively in neurons. The tfLC3 probe distributes widely in the central nervous system, including spinal cord. Expression levels were similar to endogenous LC3 and induced no detectable ALP changes. This ratiometric reporter registers differential pH-dependent changes in color as autophagosomes form, fuse with lysosomes, acidify, and degrade substrates within autolysosomes. We confirmed predicted changes in neuronal autophagy flux following specific experimental ALP perturbations. Furthermore, using a third fluorescence label in TRGL6 brains to identify lysosomes by immunocytochemistry, we validated a novel procedure to detect defective autolysosomal acidification in vivo. Thus, TRGL6 mice represent a unique tool to investigate in vivo ALP dynamics in specific neuron populations in relation to neurological diseases, aging, and disease modifying agents. Abbreviations: ACTB: actin, beta; AD: Alzheimer disease; AL: autolysosomes; ALP: autophagy-lysosome pathway; AP: autophagosome; APP: amyloid beta (Abeta) precursor protein; ATG5: autophagy related 5; ATG7: autophagy related 7; AV: autophagic vacuoles; CNS: central nervous system; CTSD: cathepsin D; CQ: chloroquine; DMEM: Dulbecco's modified Eagle's medium; GFP: green fluorescent protein; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2/GATE16: gamma-aminobutyric acid (GABA) receptor-associated protein-like 2; ICC: immunocytochemistry; ICV: intra-cerebroventricular; LAMP2: lysosomal-associated membrane protein 2; Leup: leupeptin; LY: lysosomes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RFP: red fluorescent protein; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SQSTM1: sequestosome 1; tfLC3: mRFP-eGFP-LC3; TRGL6: Thy1 mRFP eGFP LC3-line 6; PCR: polymerase chain reaction; PD: Parkinson disease.


Assuntos
Autofagia , Encéfalo/metabolismo , Lisossomos/química , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Encéfalo/citologia , Química Encefálica , Células Cultivadas , Cloroquina/farmacologia , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Morfolinas/farmacologia , Neurônios/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteína Vermelha Fluorescente
7.
Free Radic Biol Med ; 114: 40-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988799

RESUMO

Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/ßCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.


Assuntos
Doença de Alzheimer/patologia , Autofagia , Síndrome de Down/patologia , Endossomos/metabolismo , Lisossomos/metabolismo , Doença de Alzheimer/metabolismo , Animais , Síndrome de Down/metabolismo , Endossomos/patologia , Humanos , Lisossomos/patologia
8.
Neurobiol Dis ; 71: 53-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092575

RESUMO

Genetic analysis of familial forms of Alzheimer's disease (AD) causally links the proteolytic processing of the amyloid precursor protein (APP) and AD. However, the specific type of amyloid and mechanisms of amyloid pathogenesis remain unclear. We conducted a detailed analysis of intracellular amyloid with an aggregation specific conformation dependent monoclonal antibody, M78, raised against fibrillar Aß42. M78 immunoreactivity colocalizes with Aß and the carboxyl terminus of APP (APP-CTF) immunoreactivities in perinuclear compartments at intermediate times in 10month 3XTg-AD mice, indicating that this represents misfolded and aggregated protein rather than normally folded APP. At 12months, M78 immunoreactivity also accumulates in the nucleus. Neuritic plaques at 12months display the same spatial organization of centrally colocalized M78, diffuse chromatin and neuronal nuclear NeuN staining surrounded by peripheral M78 and APP-CTF immunoreactivity as observed in neurons, indicating that neuritic plaques arise from degenerating neurons with intracellular amyloid immunoreactivity. The same staining pattern was observed in neuritic plaques in human AD brains, showing elevated intracellular M78 immunoreactivity at intermediate stages of amyloid pathology (Braak A and B) compared to no amyloid pathology and late stage amyloid pathology (Braak 0 and C, respectively). These results indicate that intraneuronal protein aggregation and amyloid accumulation is an early event in AD and that neuritic plaques are initiated by the degeneration and death of neurons by a mechanism that may be related to the formation of extracellular traps by neutrophils.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/patologia , Placa Amiloide/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , alfa-Sinucleína/metabolismo
9.
Sci Transl Med ; 6(245): 245ra92, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031267

RESUMO

Preeclampsia is a pregnancy-specific disorder of unknown etiology and a leading contributor to maternal and perinatal morbidity and mortality worldwide. Because there is no cure other than delivery, preeclampsia is the leading cause of iatrogenic preterm birth. We show that preeclampsia shares pathophysiologic features with recognized protein misfolding disorders. These features include urine congophilia (affinity for the amyloidophilic dye Congo red), affinity for conformational state-dependent antibodies, and dysregulation of prototype proteolytic enzymes involved in amyloid precursor protein (APP) processing. Assessment of global protein misfolding load in pregnancy based on urine congophilia (Congo red dot test) carries diagnostic and prognostic potential for preeclampsia. We used conformational state-dependent antibodies to demonstrate the presence of generic supramolecular assemblies (prefibrillar oligomers and annular protofibrils), which vary in quantitative and qualitative representation with preeclampsia severity. In the first attempt to characterize the preeclampsia misfoldome, we report that the urine congophilic material includes proteoforms of ceruloplasmin, immunoglobulin free light chains, SERPINA1, albumin, interferon-inducible protein 6-16, and Alzheimer's ß-amyloid. The human placenta abundantly expresses APP along with prototype APP-processing enzymes, of which the α-secretase ADAM10, the ß-secretases BACE1 and BACE2, and the γ-secretase presenilin-1 were all up-regulated in preeclampsia. The presence of ß-amyloid aggregates in placentas of women with preeclampsia and fetal growth restriction further supports the notion that this condition should join the growing list of protein conformational disorders. If these aggregates play a pathophysiologic role, our findings may lead to treatment for preeclampsia.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Vermelho Congo/metabolismo , Pré-Eclâmpsia/metabolismo , Dobramento de Proteína , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Peptídeos beta-Amiloides/urina , Epitopos/imunologia , Feminino , Humanos , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/patologia , Placenta/enzimologia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/urina , Gravidez , Prognóstico , Agregados Proteicos , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(51): 20913-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213214

RESUMO

Although aberrant protein aggregation has been conclusively linked to dozens of devastating amyloid diseases, scientists remain puzzled about the molecular features that render amyloid fibrils or small oligomers toxic. Here, we report a previously unobserved type of amyloid fibril that tests as cytotoxic: one in which the strands of the contributing ß-sheets are out of register. In all amyloid fibrils previously characterized at the molecular level, only in-register ß-sheets have been observed, in which each strand makes its full complement of hydrogen bonds with the strands above and below it in the fibril. In out-of-register sheets, strands are sheared relative to one another, leaving dangling hydrogen bonds. Based on this finding, we designed out-of-register ß-sheet amyloid mimics, which form both cylindrin-like oligomers and fibrils, and these mimics are cytotoxic. Structural and energetic considerations suggest that out-of-register fibrils can readily convert to toxic cylindrins. We propose that out-of-register ß-sheets and their related cylindrins are part of a toxic amyloid pathway, which is distinct from the more energetically favored in-register amyloid pathway.


Assuntos
Amiloide/química , Vermelho Congo/farmacologia , Cristalografia por Raios X/métodos , Corantes Fluorescentes/farmacologia , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/química , Termodinâmica , Difração de Raios X , Microglobulina beta-2/química
11.
Mol Neurodegener ; 7: 37, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22866920

RESUMO

BACKGROUND: It is well established that vaccination of humans and transgenic animals against fibrillar Aß prevents amyloid accumulation in plaques and preserves cognitive function in transgenic mouse models. However, autoimmune side effects have halted the development of vaccines based on full length human Aß. Further development of an effective vaccine depends on overcoming these side effects while maintaining an effective immune response. RESULTS: We have previously reported that the immune response to amyloid oligomers is largely directed against generic epitopes that are common to amyloid oligomers of many different proteins and independent of a specific amino acid sequence. Here we have examined whether we can exploit this generic immune response to develop a vaccine that targets amyloid oligomers using a non-human random sequence amyloid oligomer. In order to study the effect of vaccination against generic oligomer epitopes, a random sequence oligomer (3A) was selected as it forms oligomers that react with the oligomer specific A11 antibody. Oligomer mimics from 3A peptide, Aß, islet amyloid polypeptide (IAPP), and Aß fibrils were used to vaccinate Tg2576 mice, which develop a progressive accumulation of plaques and cognitive impairment. Vaccination with the 3A random sequence antigen was just as effective as vaccination with the other antigens in improving cognitive function and reducing total plaque load (Aß burden) in the Tg2576 mouse brains, but was associated with a much lower incidence of micro hemorrhage than Aß antigens. CONCLUSION: These results shows that the amyloid Aß sequence is not necessary to produce a protective immune response that specifically targets generic amyloid oligomers. Using a non-human, random sequence antigen may facilitate the development of a vaccine that avoids autoimmune side effects.


Assuntos
Peptídeos beta-Amiloides/imunologia , Cognição/fisiologia , Hemorragia/imunologia , Placa Amiloide/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Animais , Anticorpos/imunologia , Antígenos/imunologia , Materiais Biomiméticos , Camundongos , Camundongos Transgênicos , Multimerização Proteica , Vacinação
12.
Science ; 335(6073): 1228-31, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22403391

RESUMO

Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein αB crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: ß-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the ß-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.


Assuntos
Amiloide/química , Fragmentos de Peptídeos/química , Cadeia B de alfa-Cristalina/química , Sequência de Aminoácidos , Amiloide/imunologia , Peptídeos beta-Amiloides/química , Anticorpos/imunologia , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/imunologia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Cadeia B de alfa-Cristalina/imunologia
13.
Neurobiol Aging ; 32(2): 210-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19297055

RESUMO

A growing body of evidence implicates low membrane cholesterol in the pathogenesis of Alzheimer's disease (AD). Here we show that Aß42 soluble oligomers accumulate more slowly and in reduced amount at the plasma membranes of PS-1L392V and APPV717I fibroblasts from familial AD (FAD) patients enriched in cholesterol content than at the counterpart membranes. The Aß42-induced production of reactive oxygen species (ROS) and the increase in membrane lipoperoxidation were also prevented by high membrane cholesterol, thus resulting in a higher resistance to amyloid toxicity with respect to control fibroblasts. On the other hand, the recruitment of amyloid assemblies to the plasma membrane of cholesterol-depleted fibroblasts was significantly increased, thus triggering an earlier and sharper production of ROS and a higher membrane oxidative injury. These results identify membrane cholesterol as being key to Aß42 oligomer accumulation at the cell surfaces and to the following Aß42-induced cell death in AD neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Fibroblastos/patologia , Estresse Oxidativo/efeitos dos fármacos , Adulto , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Peróxidos Lipídicos/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
14.
Mol Neurodegener ; 5: 57, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21144050

RESUMO

BACKGROUND: Age-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates. RESULTS: We have produced several monoclonal antibodies that specifically recognize prefibrillar oligomers and do not recognize amyloid fibrils, monomer or natively folded proteins. Like the polyclonal antisera, the individual monoclonals recognize generic epitopes that do not depend on a specific linear amino acid sequence, but they display distinct preferences for different subsets of prefibrillar oligomers. Immunological analysis of a number of different prefibrillar Aß oligomer preparations show that structural polymorphisms exist in Aß prefibrillar oligomers that can be distinguished on the basis of their reactivity with monoclonal antibodies. Western blot analysis demonstrates that the conformers defined by the monoclonal antibodies have distinct size distributions, indicating that oligomer structure varies with size. The different conformational types of Aß prefibrillar oligomers can serve as they serve as templates for monomer addition, indicating that they seed the conversion of Aß monomer into more prefibrillar oligomers of the same type. CONCLUSIONS: These results indicate that distinct structural variants or conformers of prefibrillar Aß oligomers exist that are capable of seeding their own replication. These conformers may be analogous to different strains of prions.

15.
J Mol Med (Berl) ; 88(6): 597-608, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20217034

RESUMO

Increasing evidence indicates that cell surfaces are early interaction sites for Abeta-derived diffusible ligands (ADDLs) and neurons in Alzheimer's disease (AD) pathogenesis. Our previous data showed significant oxidative damage at the plasma membrane in fibroblasts from familial AD patients with enhanced Abeta production. Here, we report that lipid rafts, ordered membrane microdomains, are chronic mediators of Abeta-induced lipid peroxidation in SH-SY5Y human neuroblastoma cells overexpressing amyloid precursor protein (APPwt) and APPV717G genes and in fibroblasts bearing the APPV717I gene mutation. Confocal microscope analysis showed that Abeta-oxidised rafts recruit more ADDLs than corresponding domains in control cells, triggering a further increase in membrane lipid peroxidation and loss of membrane integrity. Moreover, amyloid pickup at the oxidative-damaged domains was prevented by enhanced cholesterol levels, anti-ganglioside (GM1) antibodies, the B subunit of cholera toxin and lipid raft structure alteration. An enhanced structural rigidity of the detergent-resistant domains, isolated from APPwt and APPV717G cells and exposed to ADDLs, indicates a specific perturbation of raft physicochemical features in cells facing increased amyloid assembly at the membrane surface. These data identify lipid rafts as key mediators of oxidative damage as a result of their ability to recruit aggregates to the cell surface.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Peroxidação de Lipídeos , Microdomínios da Membrana/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Colesterol/química , Colesterol/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Microdomínios da Membrana/química , Mutação , Oxirredução
16.
Nat Chem Biol ; 6(2): 140-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081829

RESUMO

The aberrant assembly of peptides and proteins into fibrillar aggregates proceeds through oligomeric intermediates that are thought to be the primary pathogenic species in many protein deposition diseases. We describe two types of oligomers formed by the HypF-N protein that are morphologically and tinctorially similar, as detected with atomic force microscopy and thioflavin T assays, though one is benign when added to cell cultures whereas the other is toxic. Structural investigation at a residue-specific level using site-directed labeling with pyrene indicated differences in the packing of the hydrophobic interactions between adjacent protein molecules in the oligomers. The lower degree of hydrophobic packing was found to correlate with a higher ability to penetrate the cell membrane and cause an influx of Ca(2+) ions. Our findings suggest that structural flexibility and hydrophobic exposure are primary determinants of the ability of oligomeric assemblies to cause cellular dysfunction and its consequences, such as neurodegeneration.


Assuntos
Carboxil e Carbamoil Transferases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Multimerização Proteica , Carboxil e Carbamoil Transferases/metabolismo , Carboxil e Carbamoil Transferases/ultraestrutura , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Ligação Proteica , Conformação Proteica
17.
Amino Acids ; 38(4): 1101-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19582548

RESUMO

A neuropathological characteristic of Alzheimer's disease is the extracellular accumulation of amyloid beta peptide (Abeta) in neuritic plaques. Recent evidences suggested that soluble Abeta oligomers are the predominant neurotoxic species for neurons. Thus, considerable attention has been paid to discriminate the cytotoxic pathways of Abeta pre-fibrillar aggregates and mature fibrils. We showed that the mechanisms by which Abeta oligomers and fibrils generated reactive oxygen species differ in terms of site of production and kinetics, suggesting the involvement of different intra/extracellular pathways.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adsorção/efeitos dos fármacos , Doença de Alzheimer/patologia , Amiloide/química , Peptídeos beta-Amiloides/química , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colchicina/farmacologia , Citoesqueleto/efeitos dos fármacos , Citosol/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Membranas Intracelulares/metabolismo , Microscopia Confocal , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fragmentos de Peptídeos/química
18.
Biochim Biophys Acta ; 1788(10): 2204-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19651105

RESUMO

Increasing evidence supports the idea that the initial events of Abeta oligomerization and cytotoxicity in Alzheimer's disease involve the interaction of amyloid Abeta-derived diffusible ligands (ADDLs) with the cell membrane. This also indicates lipid rafts, ordered membrane microdomains enriched in cholesterol, sphingolipids and gangliosides, as likely primary interaction sites of ADDLs. To shed further light on the relation between ADDL-cell membrane interaction and oligomer cytotoxicity, we investigated the dependence of ADDLs binding to lipid rafts on membrane cholesterol content in human SH-SY5Y neuroblastoma cells. Confocal laser microscopy showed that Abeta1-42 oligomers markedly interact with membrane rafts and that a moderate enrichment of membrane cholesterol prevents their association with the monosialoganglioside GM1. Moreover, anisotropy fluorescence measurements of flotillin-1-positive rafts purified by sucrose density gradient suggested that the content of membrane cholesterol and membrane perturbation by ADDLs are inversely correlated. Finally, contact mode atomic force microscope images of lipid rafts in liquid showed that ADDLs induce changes in raft morphology with the appearance of large cavities whose size and depth were significantly reduced in similarly treated cholesterol-enriched rafts. Our data suggest that cholesterol reduces amyloid-induced membrane modifications at the lipid raft level by altering raft physicochemical features.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Colesterol/fisiologia , Microdomínios da Membrana/fisiologia , Neuroblastoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Células Tumorais Cultivadas
19.
Neurobiol Dis ; 35(3): 352-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19523517

RESUMO

Recent evidence has suggested a role for soluble oligomeric Abeta species in the pathology of Alzheimer's disease (AD). Fibrillar plaque deposits are present in non-demented individuals and levels of soluble Abeta correlate better with cognitive dysfunction in AD and transgenic mouse models. We have previously reported that there are at least two conformationally distinct types of Abeta oligomers: prefibrillar oligomers that are kinetic intermediates in fibril assembly reactions and are specifically recognized by A11 antibody and fibrillar oligomers that may represent fibril seeds or small pieces of fibrils and are recognized by a fibril specific antibody, OC. We have examined the levels of these two types of oligomers in the PBS soluble fraction of brain tissue from control cases, cases with senile degenerative changes (SDC) and AD patients. We found that the levels of soluble fibrillar oligomers detected by OC antibody are significantly elevated in multiple brain regions of AD patients. The elevated fibrillar oligomer levels were found not to be an artifact of tissue homogenization, nor a result of increased Abeta or APP levels. The concentration of fibrillar oligomers in adjacent brain regions of the same patient can vary widely and were not detected in post-mortem cerebrospinal fluid. In contrast, the level of prefibrillar oligomers are variable in both AD and age matched controls, indicating that they are not correlated with cognitive dysfunction and suggesting that they precede dementia in AD. Significant correlations were found between the levels of fibrillar oligomers and cognitive decline (MMSE scores) as well as the neuropathological hallmarks of AD. These results indicate that fibrillar oligomers may play a key role in the pathology of AD and may be a new target for diagnostic and therapeutic development.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Colágenos Fibrilares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/patologia , Feminino , Colágenos Fibrilares/líquido cefalorraquidiano , Humanos , Immunoblotting , Masculino , Nexinas de Proteases , Escalas de Graduação Psiquiátrica , Receptores de Superfície Celular/metabolismo
20.
J Biol Chem ; 284(7): 4230-7, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19098006

RESUMO

Amyloid oligomers are believed to play causal roles in several types of amyloid-related neurodegenerative diseases. Several different types of amyloid oligomers have been reported that differ in morphology, size, or toxicity, raising the question of the pathological significance and structural relationships between different amyloid oligomers. Annular protofibrils (APFs) have been described in oligomer preparations of many different amyloidogenic proteins and peptides as ring-shaped or pore-like structures. They are interesting because their pore-like morphology is consistent with numerous reports of membrane-permeabilizing activity of amyloid oligomers. Here we report the preparation of relatively homogeneous preparations of APFs and an antiserum selective for APFs (alphaAPF) compared with prefibrillar oligomers (PFOs) and fibrils. PFOs appear to be precursors for APF formation, which form in high yield after exposure to a hydrophobic-hydrophilic interface. Surprisingly, preformed APFs do not permeabilize lipid bilayers, unlike the precursor PFOs. APFs display a conformation-dependent, generic epitope that is distinct from that of PFOs and amyloid fibrils. Incubation of PFOs with phospholipids vesicles results in a loss of PFO immunoreactivity with a corresponding increase in alphaAPF immunoreactivity, suggesting that lipid vesicles catalyze the conversion of PFOs into APFs. The annular anti-protofibril antibody also recognizes heptameric alpha-hemolysin pores, but not monomers, suggesting that the antibody recognizes an epitope that is specific for a beta barrel structural motif.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Anticorpos/química , Epitopos/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Motivos de Aminoácidos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Epitopos/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Doenças Neurodegenerativas/metabolismo , Fragmentos de Peptídeos/metabolismo , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...