Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 11(1): 4760, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958766

RESUMO

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities, and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. The Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. Therefore, even compatible polymers can be used to form these Janus objects. In fact, any polymers should qualify, as long as they do not prevent co-assembly of the stickers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.

3.
Macromol Rapid Commun ; 40(3): e1800698, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30417532

RESUMO

Long and rigid objects formed by self-assembly in water are useful as templates or for their rheological or biological properties. They are usually obtained by combining hydrogen bonding and strong hydrophobic interactions brought by an alkyl or alkylene chain. A simple access to well-defined rod-like assemblies in water is reported based on a penta-urea sticker directly connected to poly(ethylene oxide) side chains. These assemblies are characterized by an average length of several hundreds of nanometers and a monodisperse radius (4.5 nm) resulting from a reduced lateral aggregation of the stickers.


Assuntos
Dimerização , Interações Hidrofóbicas e Hidrofílicas , Ureia/química , Microscopia Crioeletrônica , Óxido de Etileno/química , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Polímeros/química , Água/química
4.
ACS Appl Mater Interfaces ; 8(48): 33307-33315, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934152

RESUMO

A new approach for the elaboration of low molecular weight pressure-sensitive adhesives based on supramolecular chemistry is explored. The synthesis of model systems coupled with probe-tack tests and rheological experiments highlights the influence of the transient network formed by supramolecular bonds on the adhesion energy. The first step of our approach consists of synthesizing poly(butyl acrylate-co-glycidyl methacrylate) copolymers from a difunctional initiator able to self-associate by four hydrogen bonds between urea groups. Linear copolymers with a low dispersity (Mn = 10 kg/mol, Ip < 1.4) have been synthesized via atom transfer radical polymerization. Films of the copolymers were then partially cross-linked through reaction of the epoxy functions with a diamine. The systematic variation of the average ratio of glycidyl methacrylate and diamine per copolymer shed light on the respective role played by the supramolecular interactions (between bis-urea groups and with the side chains) and by the chain extension and branching induced by the diamine/epoxy reaction. In this strategy, the adhesive performance can be optimized by modifying the strength of "stickers" (via the structure of the supramolecular initiator, for instance) and the polymer network (e.g., via the length and level of branching of the copolymer chains) in order to approach commercial PSA-like properties (high debonding energy and clean removal).

5.
Langmuir ; 32(44): 11664-11671, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27726400

RESUMO

It is of interest to develop two-component systems for added flexibility in the design of supramolecular polymers, nanofibers, or organogels. Bisureas are known to self-assemble by hydrogen bonding into long supramolecular objects. We show here that mixing aromatic bisureas with slightly different structures can yield surprisingly large synergistic effects. A strong increase in viscosity is observed when a bisurea with the sterically demanding 2,4,6-trimethylbenzene spacer is combined with a bisurea bearing no methyl group in position 2 of the aromatic spacer (i.e., 4-methylbenzene or 4,6-dimethylbenzene). This effect is the consequence of a change in the supramolecular assembly triggered by the composition of the mixture. The mixture of complementary bisureas forms rodlike objects that are more stable by about 1 kJ/mol and that are thicker than the rodlike objects formed by both parent systems.

6.
Langmuir ; 32(35): 8900-8, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27459308

RESUMO

In an attempt to design urea-based Janus nanocylinders through a supramolecular approach, nonsymmetrical bis(urea)s and tris(urea)s decorated by two incompatible polymer arms, namely, poly(styrene) (PS) and poly(isobutylene) (PIB), were synthesized using rather straightforward organic and polymer chemistry techniques. Light scattering experiments revealed that these molecules self-assembled in cyclohexane by cooperative hydrogen bonds. The extent of self-assembly was limited for the bis(urea)s. On the contrary, reasonably anisotropic 1D structures (small nanocylinders) could be obtained with the tris(urea)s (Nagg ∼ 50) which developed six cooperative hydrogen bonds per molecule. (1)H transverse relaxation measurements and NOESY NMR experiments in cyclohexane revealed that perfect Janus nanocylinders with one face consisting of only PS and the other of PIB were not obtained. Nevertheless, phase segregation between the PS and PIB chains occurred to a large extent, resulting in patchy cylinders containing well separated domains of PIB and PS chains. Reasons for this behavior were proposed, paving the way to improve the proposed strategy toward true urea-based supramolecular Janus nanocylinders.

7.
ACS Macro Lett ; 5(2): 244-247, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35614686

RESUMO

Low molecular weight gelators are versatile and responsive gel-forming systems. However, it is still a challenge to develop a new organogelator for a precise application, i.e., to gel a predetermined liquid. We propose a simple concept of a two-component gelling system that can be rationally adapted to gel liquids ranging in polarity from silicone oil to acetonitrile.

8.
Faraday Discuss ; 143: 235-50; discussion 265-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20334105

RESUMO

A series of amphiphilic LC block copolymers, in which the hydrophobic block is a smectic polymer poly(4-methoxyphenyl 4-(6-acryloyloxy-hexyloxy)-benzoate) (PA6esterl) and the hydrophilic block is polyethyleneglycol (PEG), were synthesized and characterized. The self-assembly of one of them in both the pure state and the dilute aqueous solution was investigated in detail. Nano-structures in the pure state were studied by SAXS and WAXS on samples aligned by a magnetic field. A hexagonal cylindrical micro-segregation phase was observed with a lattice distance of 11.2 nm. The PEG blocks are in the cylinder, while the smectic polymer blocks form a matrix with layer spacing 2.4 nm and layer normal parallel to the long axis of the cylinders. Faceted unilamellar polymer vesicles, polymersomes, were formed in water, as revealed by cryo-TEM. In the lyotropic bilayer membrane of these polymersomes, the thermotropic smectic order in the hydrophobic block is clearly visible with layer normal parallel to the membrane surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...