Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475267

RESUMO

In the mature mouse retina, Otx2 is expressed in both retinal pigmented epithelium (RPE) and photoreceptor (PR) cells, and Otx2 knock-out (KO) in the RPE alone results in PR degeneration. To study the cell-autonomous function of OTX2 in PRs, we performed PR-specific Otx2 KO (cKO) in adults. As expected, the protein disappears completely from PR nuclei but is still observed in PR inner and outer segments while its level concomitantly decreases in the RPE, suggesting a transfer of OTX2 from RPE to PRs in response to Otx2 ablation in PRs. The ability of OTX2 to transfer from RPE to PRs was verified by viral expression of tagged-OTX2 in the RPE. Transferred OTX2 distributed across the PR cytoplasm, suggesting functions distinct from nuclear transcription regulation. PR-specific Otx2 cKO did not alter the structure of the retina but impaired the translocation of PR arrestin-1 on illumination changes, making mice photophobic. RNA-seq analyses following Otx2 KO revealed downregulation of genes involved in the cytoskeleton that might account for the arrestin-1 translocation defect, and of genes involved in extracellular matrix (ECM) and signaling factors that may participate in the enhanced transfer of OTX2. Interestingly, several RPE-specific OTX2 target genes involved in melanogenesis were downregulated, lending weight to a decrease of OTX2 levels in the RPE following PR-specific Otx2 cKO. Our study reveals a new role of endogenous OTX2 in PR light adaptation and demonstrates the existence of OTX2 transfer from RPE to PR cells, which is increased on PR-specific Otx2 ablation and might participate in PR neuroprotection.


Assuntos
Fotofobia , Degeneração Retiniana , Animais , Camundongos , Fatores de Transcrição Otx/genética , Células Fotorreceptoras , Retina
2.
PLoS Genet ; 14(10): e1007622, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30303954

RESUMO

Establishment of sister chromatid cohesion is coupled to DNA replication, but the underlying molecular mechanisms are incompletely understood. DDX11 (also named ChlR1) is a super-family 2 Fe-S cluster-containing DNA helicase implicated in Warsaw breakage syndrome (WABS). Herein, we examined the role of DDX11 in cohesion establishment in human cells. We demonstrated that DDX11 interacts with Timeless, a component of the replication fork-protection complex, through a conserved peptide motif. The DDX11-Timeless interaction is critical for sister chromatid cohesion in interphase and mitosis. Immunofluorescence studies further revealed that cohesin association with chromatin requires DDX11. Finally, we demonstrated that DDX11 localises at nascent DNA by SIRF analysis. Moreover, we found that DDX11 promotes cohesin binding to the DNA replication forks in concert with Timeless and that recombinant purified cohesin interacts with DDX11 in vitro. Collectively, our results establish a critical role for the DDX11-Timeless interaction in coordinating DNA replication with sister chromatid cohesion, and have important implications for understanding the molecular basis of WABS.


Assuntos
Proteínas de Ciclo Celular/genética , Cromátides/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Replicação do DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos/genética , RNA Helicases DEAD-box/metabolismo , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...