Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304001

RESUMO

This study aimed to increase the physical stability of native sunflower oleosomes to expand their range of applications in food. The first objective was to increase the stability and functionality of oleosomes to lower pH since most food products require a pH of 5.5 or lower for microbial stability. Native sunflower oleosomes had a pI of 6.2. One particularly effective strategy for long-term stabilization, both physical and microbial, was the addition of 40% (w/w) glycerol to the oleosomes plus homogenization, which decreased the pI to 5.3 as well as decreasing oleosome size, narrowing the size distribution and increasing colloidal stability. Interfacial engineering of oleosomes by coating them with lecithin and the polysaccharides xanthan and gellan, effectively increased stability, and lowered their pI to 3.0 for lecithin and lower than 3.0 for xanthan. Coating oleosomes also caused a greater absolute value of the ζ-potential; for example, this amount was shifted to -20 mV at pH 4.0 for xanthan and to -28 mV at pH 4.0 for lecithin, which provides electrostatic stabilization. Polysaccharides also provide steric stabilization, which is superior. A significant increase in the diameter of coated oleosomes was observed with lecithin, xanthan and gellan. The oleosome sample with 40% glycerol showed high storage stability at 4 °C (over three months). The addition of glycerol also decreased the water activity of the oleosome suspension to 0.85, which could prevent microbial growth.

3.
Curr Res Food Sci ; 6: 100465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891546

RESUMO

This study aimed to increase the physical stability of native sunflower oleosomes to expand their range of applications in food. The first objective was to increase the stability and functionality of oleosomes to lower pH since most food products require a pH of 5.5 or lower for microbial stability. Native sunflower oleosomes had a pI of 6.2. One particularly effective strategy for long-term stabilization, both physical and microbial, was the addition of 40% (w/w) glycerol to the oleosomes plus homogenization, which decreased the pI to 5.3 as well as decreasing oleosome size, narrowing the size distribution and increasing colloidal stability. Interfacial engineering of oleosomes by coating them with lecithin and the polysaccharides xanthan and gellan, effectively increased stability, and lowered their pI to 3.0 for lecithin and lower than 3.0 for xanthan. Coating oleosomes also caused a greater absolute value of the ζ-potential; for example, this amount was shifted to -20 mV at pH 4.0 for xanthan and to -28 mV at pH 4.0 for lecithin, which provides electrostatic stabilization. Polysaccharides also provide steric stabilization, which is superior. A significant increase in the diameter of coated oleosomes was observed with lecithin, xanthan and gellan. The oleosome sample with 40% glycerol showed high storage stability at 4 °C (over three months). The addition of glycerol also decreased the water activity of the oleosome suspension to 0.85, which could prevent microbial growth.

4.
Sci Rep ; 12(1): 15832, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138091

RESUMO

Co-contamination by organic solvents (e.g., toluene and tetrahydrofuran) and metal ions (e.g., Cu2+) is common in industrial wastewater and in industrial sites. This manuscript describes the separation of THF from water in the absence of copper ions, as well as the treatment of water co-polluted with either THF and copper, or toluene and copper. Tetrahydrofuran (THF) and water are freely miscible in the absence of lauric acid. Lauric acid separates the two solvents, as demonstrated by proton nuclear magnetic resonance (1H NMR) and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). The purity of the water phase separated from 3:7 (v/v) THF:water mixtures using 1 M lauric acid is ≈87%v/v. Synchrotron small angle X-Ray scattering (SAXS) indicates that lauric acid forms reverse micelles in THF, which swell in the presence of water (to host water in their interior) and ultimately lead to two free phases: 1) THF-rich and 2) water-rich. Deprotonated lauric acid (laurate ions) also induces the migration of Cu2+ ions in either THF (following separation from water) or in toluene (immiscible in water), enabling their removal from water. Laurate ions and copper ions likely interact through physical interactions (e.g., electrostatic interactions) rather than chemical bonds, as shown by ATR-FTIR. Inductively coupled plasma-optical emission spectrometry (ICP-OES) demonstrates up to 60% removal of Cu2+ ions from water co-polluted by CuSO4 or CuCl2 and toluene. While lauric acid emulsifies water and toluene in the absence of copper ions, copper salts destabilize emulsions. This is beneficial, to avoid that copper ions are re-entrained in the water phase alongside with toluene, following their migration in the toluene phase. The effect of copper ions on emulsion stability is explained based on the decreased interfacial activity and compressional rigidity of interfacial films, probed using a Langmuir trough. In wastewater treatment, lauric acid (a powder) can be mixed directly in the polluted water. In the context of groundwater remediation, lauric acid can be solubilized in canola oil to enable its injection to treat aquifers co-polluted by organic solvents and Cu2+. In this application, injectable filters obtained by injecting cationic hydroxyethylcellulose (HEC +) would impede the flow of toluene and copper ions partitioned in it, protecting downstream receptors. Co-contaminants can be subsequently extracted upstream of the filters (using pumping wells), to enable their simultaneous removal from aquifers.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/química , Descontaminação , Emulsões , Furanos , Íons/análise , Lauratos , Ácidos Láuricos , Micelas , Pós , Prótons , Óleo de Brassica napus , Sais , Espalhamento a Baixo Ângulo , Solventes , Tolueno/análise , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise , Difração de Raios X
5.
J Colloid Interface Sci ; 607(Pt 2): 1741-1753, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34598031

RESUMO

HYPOTHESIS: A unique adhesion-shielding (AS)-based method could be used to manufacture magnetic Janus nanoparticles (IM-JNPs) of promising interfacial activities, asymmetric surface wettability, and great performance on deoiling from oily wastewater under the external magnetic field. EXPERIMENTS: The IM-JNPs were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The interfacial properties of IM-JNPs were investigated by the measurements of interfacial pressure-area isotherms (π-A), oil-water interfacial tension, and the related crumpling ratio. The Langmuir-Blodgett (L-B) technique was used to determine the asymmetric surface wettability of the IM-JNPs. The performance and recyclability of IM-JNPs for treating oily wastewater were also investigated. FINDINGS: Using the proposed AS-based method, 17.9 g IM-JNPs were synthesized at a time and exhibited excellent interfacial properties, as indicated by decreasing oil-water interfacial tension from 38 to 27 mN/m. The crumpling behavior of the oil droplet further demonstrated the irreversible deposition of IM-JNPs at the oil droplet surfaces. The L-B technique and water contact angle measurement confirmed the asymmetric surface wettability of the IM-JNPs. The IM-JNPs were applied to successful removal of > 90% emulsified oil droplets from the household-produced oily wastewater under the external magnetic field while realizing facile recyclability and regeneration.


Assuntos
Nanopartículas Multifuncionais , Fenômenos Magnéticos , Óleos , Tensão Superficial , Molhabilidade
6.
Langmuir ; 37(37): 11153-11169, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34514802

RESUMO

Nonaqueous phase liquids (NAPL, e.g., hydrocarbons and chlorinated compounds) are common groundwater pollutants. Electrokinetic remediation of NAPLs uses electric fields to draw them toward electrodes and remove them from groundwater. The treatment requires NAPL mobility. Emulsification increases mobility, but at a risk for downstream receptors. We propose using alkaline aqueous solutions of zein and graphene nanoparticles (GNP) to form conductive materials, which could also act as barriers to control NAPL migration. Alkaline zein-GNP solutions can be injected in the polluted soil and solidified by neutralizing the pH (e.g., with glacial acetic acid, GAA). Shear rheology experiments showed that zein-GNP composites were cohesive, and voltammetry showed that GNP increased electrical conductivity of zein-based materials by 3.5 times. Gas chromatography-mass spectroscopy (GC-MS) demonstrated that the electrokinetic treatment of model sandy aquifers yielded >60% and ∼47% removal of emulsified toluene in freshwater and in salt solutions, respectively (with 30 min treatment using a 10 V differential voltage between a zein-GNP and an aluminum electrode. NaCl was used as model salt contaminant. The conductivity of surfactant solutions was lower in saline water than in freshwater, explaining differences in toluene removal. Toluene-water emulsions were stabilized using the natural surfactants lecithin and saponin. These surfactants acted synergistically in stabilizing emulsions in either freshwater or salt solutions. Lecithin and saponin likely interacted at toluene-water interfaces, as indicated by the morphology, interfacial tension and compressional rigidity of toluene-water interfaces with both components (relative to interfaces of either lecithin or saponin alone). The compressional behavior of interfacial films was well-described by the Marczak model. Electrokinetic treatment of saturated model sandy aquifers also decreased the turbidity of emulsions of water and either tricholoroethylene (TCE, by ∼41%) or diesel (by ∼75%), in the presence of a bacterial biosurfactant. This decrease was used as semiquantitative indicator of NAPL removal from water.


Assuntos
Grafite , Poluentes Químicos da Água , Zeína , Hidrocarbonetos , Tensoativos , Poluentes Químicos da Água/análise
7.
Curr Res Food Sci ; 4: 233-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937871

RESUMO

The quality and safety of food is an important issue to the whole society, since it is at the basis of human health, social development and stability. Ensuring food quality and safety is a complex process, and all stages of food processing must be considered, from cultivating, harvesting and storage to preparation and consumption. However, these processes are often labour-intensive. Nowadays, the development of machine vision can greatly assist researchers and industries in improving the efficiency of food processing. As a result, machine vision has been widely used in all aspects of food processing. At the same time, image processing is an important component of machine vision. Image processing can take advantage of machine learning and deep learning models to effectively identify the type and quality of food. Subsequently, follow-up design in the machine vision system can address tasks such as food grading, detecting locations of defective spots or foreign objects, and removing impurities. In this paper, we provide an overview on the traditional machine learning and deep learning methods, as well as the machine vision techniques that can be applied to the field of food processing. We present the current approaches and challenges, and the future trends.

8.
SN Appl Sci ; 3(1): 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442668

RESUMO

ABSTRACT: Zein-based materials were used to remove Trypan blue from water under flow conditions and in batch tests. In flow tests, zein dissolved at pH = 13 was injected in sand columns and subsequently coagulated with CaCl2, to create an adsorbent filter which removed over 99% of Trypan blue. Batch tests were conducted using zein powder, zein dissolved at pH = 13 and coagulated with CaCl2, Fe2Cl3 or citric acid, and zein dissolved in ethanol and then coagulated with water. The highest Trypan blue removal was achieved with zein powder (4000 mg Trypan blue/kg sorbent, as determined through spectrophotometry), followed by zein coagulated with Fe2Cl3 (500 mg Trypan blue/kg sorbent) and with other salts (140 mg Trypan blue/kg sorbent). Differences in the sorption efficiency are attributed to differences in the surface area. The sorption isotherm of Trypan blue onto zein-based sorbents was a Type II isotherm, suggesting physisorption. Desorption of Trypan blue was limited when zein-based coagulated sorbents were immersed in pure water. Trypan blue could be degraded by free laccase in water, as determined through spectrophotometry and electrospray ionization mass spectroscopy (ESI-MS). Trypan blue could also be degraded by laccase when zein-based laccase-containing sorbents were prepared at pH = 10, using Fe2Cl3 as coagulant. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42452-020-04107-w.

9.
Sci Rep ; 10(1): 11931, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686747

RESUMO

Injectable filters permeable to water but impermeable to non-polar solvents were developed to contain non-aqueous phase liquids (NAPL) in contaminated aquifers, hence protecting downstream receptors during NAPL remediation. Filters were produced by injecting aqueous solutions of 0.01% chitosan, hydroxyethylcellulose and quaternized hydroxyethylcellulose into sand columns, followed by rinsing with water. Polymer sorption onto silica was verified using a quartz-crystal microbalance with dissipation monitoring. Fluorescence and gas chromatography mass spectroscopy showed low ppm range concentrations of non-polar solvents (e.g., hexane and toluene) in water eluted from the filters (in the absence of emulsifiers). The contact angles between polymer-coated surfaces and hexane or toluene were > 90°, indicating surface oleophobicity. Organic, polar solvents (e.g. tetrahydrofuran and tetrachloroethylene, TCE) were not separated from water. The contact angles between polymer-coated surfaces and TCE was also > 90°. However, the contact area with polymer coated surfaces was greater for TCE than non-polar solvents, suggesting higher affinity between TCE and the surfaces. Emulsifiers can be used to facilitate NAPL extraction from aquifers. Emulsion separation efficiency depended on the emulsifier used. Emulsions were not separated with classical surfactants (e.g. Tween 20 and oleic acid) or alkaline zein solutions. Partial emulsion separation was achieved with humic acids and zein particles.

10.
Water Environ Res ; 92(9): 1255-1267, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32153084

RESUMO

Phosphorus released in lakes due to agricultural water runoff causes eutrophication, deteriorating water quality and harming ecosystems. Two adsorbents were studied for the removal of phosphate from water: plaster of Paris powder and hydrogel beads produced using alginate, carboxymethylcellulose, and aluminum. The reaction kinetics, adsorption capacity, and ability to desorb were compared. Sorption of phosphate with either plaster of Paris or hydrogel beads was well described by the Langmuir model. In deionized water, hydrogel beads had a maximum sorption capacity of 90.5 mg  PO 4 3 - /g dry bead with an equilibration time of approximately 24 hr. Monovalent anions (e.g., chloride) did not affect phosphorus sorption onto hydrogel beads, whereas divalent anions (e.g., sulfate) hindered sorption. In deionized water, plaster of Paris (POP) powder has a maximum capacity of 1.52 mg  PO 4 3 - /g with an equilibrium time of less than 10 min. Sorbents can potentially be reused following phosphate desorption, and desorbed phosphate may be reused as fertilizer. At pH = 9.5, hydrogel beads desorbed up to 60% of the original amount of phosphate sorbed and lower amounts at lower pH. At pH = 2, POP powder desorbed only 35% of the initial phosphate sorbed, and desorption decreased with increasing pH. PRACTITIONER POINTS: The maximum sorption capacity of plaster of Paris is 1.52 mg  PO 4 3 - /g. The maximum sorption capacity of hydrogel beads is 90.5 mg  PO 4 3 - /g. Monovalent anions do not affect phosphorus sorption, and divalent anions hinder it by ≈36%. Sorption is well described by Langmuir isotherms (R2  > 0.98). Hydrogel beads desorb 60% of phosphorus at pH = 9, possibly allowing phosphorus reuse.


Assuntos
Alginatos , Poluentes Químicos da Água , Adsorção , Alumínio , Sulfato de Cálcio , Carboximetilcelulose Sódica , Ecossistema , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Água
11.
J Environ Sci (China) ; 90: 98-109, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081345

RESUMO

Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as 'emulsion locks' to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of 'emulsion locks'. Ethanol also gelled the emulsions at 100 mL/L.


Assuntos
Hidrocarbonetos , Tensoativos , Água , Emulsões , Dodecilsulfato de Sódio
12.
Langmuir ; 36(6): 1484-1495, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31944124

RESUMO

A novel sorbent material consisting of a gel made from canola oil and water, emulsified with lecithin, was used to remove two model solvents from water. Sorption capacity was quantified through small-scale batch experiments. The structure and the mechanical properties of the gel were compared with and without added solvent to assess their cohesiveness upon removing contaminants from water. Confocal microscopy showed that the initial gel consisted of water droplets clustered in a canola oil continuous phase. The G' of the gels increased with solvent absorption to a maximum at 33% (v/v) hexane or 24% (v/v) toluene. Larger absorbed volumes led to decreases in G' of the gel. G' for solvent mixtures of 50% toluene and 50% hexane was intermediate between G' measured for the same volumes of pure solvents. Confocal microscopy suggests that the decrease of G' upon addition of large solvent volumes was due to a simple dilution effect. It is hypothesized that the initial increase in storage modulus was caused by changes in the structure of the lecithin films formed at the oil-water interfaces. This hypothesis was evaluated through measurements of interfacial tension, visualization of the interface with optical microscopy, force measurements of a single droplet under compression using a cantilevered-capillary force apparatus, compressional isotherm measurements conducted using a Langmuir trough. The cantilevered-capillary force apparatus and Langmuir trough experiments demonstrated that lecithin films at the canola oil-water interface were rigidified by toluene and hexane addition.

13.
J Colloid Interface Sci ; 562: 470-482, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31785939

RESUMO

Switchable double emulsions (water in oil in water, W/O/W) are proposed for the in situ immobilization of subsurface organic contaminants such as toluene, hexane or benzene. Primary W/O emulsions were prepared by emulsifying 250 mL of 0.36 M CaCl2 aqueous solutions in 1 L of canola oil (with 12.5 g/L of ethylcellulose, EC, and 2.5 g/L of calcium stearate). In the primary W/O emulsion the water droplets in oil were ≈8 µm, as observed using an optical and a confocal microscope. EC and calcium stearate adsorbed at the oil water interface (as demonstrated by interfacial tension measurements), forming films which stabilized the W/O emulsions (as verified with bottle tests). Experiments conducted using a Langmuir trough suggest that EC and calcium stearate films did not desorb from the oil-water interface upon compression. Crumpling tests and optical microscopy observations indicate that EC and calcium stearate films were skin-like, and buckled when deformed. To obtain double W/O/W emulsions the primary emulsions were emulsified in a 0.75 wt% solution of sodium alginate, with 2 mL/L of Tween 20 and 10 g/L of NaCl. The formation of W/O/W emulsions was verified through optical microscopy and confocal microscopy observations. In the absence of the contaminants the double emulsions were stable, as observed by resting them on the bench over three days and agitating them with a multi-action wrist shaker for 30 min. Also, they had low shear elastic (G' = 2.67 ± 0.58 Pa) and viscous (G″ = 1.69 ± 0.24 Pa) moduli, which should facilitate their transport through geological media (e.g. soil) to polluted areas. Upon mixing with toluene, hexane or benzene at concentrations ranging from 5% to 17%, the double emulsions were destabilized. Emulsion destabilization caused the release of CaCl2, which crosslinked sodium alginate and formed gels in which the contaminants were incorporated. The gelation rate and the magnitude of the viscoelastic moduli depended on the contaminant type and concentration, and on the mixing time. Gelation occurred fastest with the highest toluene concentrations tested (9% to 17%), but the highest elastic moduli were measured with 9% toluene concentrations for the longest mixing times tested (90 s). Gelation occurred slowest with hexane, likely due to the poor solubility of EC in hexane. Because of their ability to gel exclusively in contaminant proximity, the double emulsions studied offer a potential strategy to control the migration of plumes of contaminants such as toluene, hexane or benzene.

14.
Sci Rep ; 9(1): 5773, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962471

RESUMO

Fabrication of microsystems is traditionally achieved with photolithography. However, this fabrication technique can be expensive and non-ideal for integration with microfluidic systems. As such, graphene fabrication is explored as an alternative. This graphene fabrication can be achieved with graphite oxide undergoing optical exposure, using optical disc drives, to impose specified patterns and convert to graphene. This work characterises such a graphene fabrication, and provides fabrication, electrical, microfluidic, and scanning electron microscopy (SEM) characterisations. In the fabrication characterisation, a comparison is performed between traditional photolithography fabrication and the new graphene fabrication. (Graphene fabrication details are also provided.) Here, the minimum achievable feature size is identified and graphene fabrication is found to compare favourably with traditional photolithography fabrication. In the electrical characterisation, the resistivity of graphene is measured as a function of fabrication dose in the optical disc drive and saturation effects are noted. In the microfluidic characterisation, the wetting properties of graphene are shown through an investigation of the contact angle of a microdroplet positioned on a surface that is treated with varying fabrication dose. In the SEM characterisation, the observed effects in the previous characterisations are attributed to chemical or physical effects through measurement of SEM energy dispersive X-ray spectra and SEM images, respectively. Overall, graphene fabrication is revealed to be a viable option for development of microsystems and microfluidics.

15.
Langmuir ; 31(38): 10382-91, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26325243

RESUMO

Physical properties of interfacial layers formed at the xylene-water interface by the adsorption of a polyaromatic organic compound, N-(1-hexylheptyl)-N'-(5-carbonylicpentyl) perylene-3,4,9,10-tetracarboxylic bisimide (in brief, C5Pe), were studied systematically. The deprotonation of the carboxylic group of C5Pe at alkaline pH made it highly interfacially active, significantly reducing the xylene-water interfacial tension. Thin liquid film experiments showed a continuous buildup of heterogeneous C5Pe interfacial layers at the xylene-water interfaces, which contributed to the formation of stable W/O emulsions. Continual accumulation and rearrangement of C5Pe aggregates at the xylene-water interface to form a thick layer was confirmed by in situ Brewster angle microscopy (BAM) and atomic force microscopy (AFM). The rheology measurement of the interfacial layer by double-wall ring interfacial rheometry under oscillatory shear showed that the interfacial layers formed from C5Pe solutions of high concentrations were substantially more elastic and rigid. The presence of elastically dominant interfacial layers of C5Pe led to the formation of stable water-in-xylene emulsions.


Assuntos
Imidas/química , Perileno/análogos & derivados , Água/química , Xilenos/química , Emulsões , Concentração de Íons de Hidrogênio , Estrutura Molecular , Óleos/química , Tamanho da Partícula , Perileno/química , Reologia , Tensão Superficial
16.
Langmuir ; 31(23): 6282-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25835257

RESUMO

Two distinct uniform hybrid particles, with similar hydrodynamic diameters and comparable zeta potentials, were prepared by copolymerizing N-isopropylacrylamide (NIPAM) and styrene. These particles differed in their styrene to NIPAM (S/N) mass ratios of 1 and 8 and are referred to as S/N 1 and S/N 8, respectively. Particle S/N 1 exhibited a typical behavior of soft particles; that is, the particles shrank in bulk aqueous solutions when the temperature was increased. As a result, S/N 1 particles were interfacially active. In contrast, particle S/N 8 appeared to be rigid in response to temperature changes. In this case, the particles showed a negligible interfacial activity. Interfacial shear rheology tests revealed the increased rigidity of the particle-stabilized film formed at the heptane-water interface by S/N 1 than S/N 8 particles. As a result, S/N 1 particles were shown to be better emulsion stabilizers and emulsify a larger amount of heptane, as compared with S/N 8 particles. The current investigation confirmed a better performance of emulsion stabilization by soft particles (S/N 1) than by rigid particles (S/N 8), reinforcing the importance of controlling softness or deformability of particles for the purpose of stabilizing emulsions.

17.
J Colloid Interface Sci ; 411: 8-15, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24112834

RESUMO

Atomic force microscopy-based force spectroscopy (AFM) was employed to investigate the forces of interaction between aluminum silicates (mica and a synthetic aluminum-silicate) and iron particles, both bare and coated with carboxymethyl cellulose (CMC) polymer. Experiments were conducted in water and salt solutions (100mM NaCl and 100mM CaCl2) at pH 5.5, in water at pH 4 and 8, and in 10mg/l humic acid solutions. In addition, humic acid sorption onto the synthetic aluminum-silicate was probed with a quartz crystal microbalance with dissipation monitoring (QCM-D). Interactions between bare iron particles and aluminum silicate were attractive except at pH 8 and in the presence of humic acids in which case forces upon approach were repulsive. Interactions between bare iron and mica were similar, except that repulsive forces upon approach were measured in 100mM NaCl solutions, possibly due to increased hydration of mica compared to aluminum silicate. Interactions between CMC coated iron particles and aluminum-silicates were either repulsive or at most weakly attractive, likely due to repulsive electro-steric forces associated with the CMC. QCM-D results indicated that humic acids adsorbed to aluminum silicate, producing electro-steric repulsion to coated and uncoated iron. AFM data were successfully modeled using extended DLVO theory and a modified Ohshima's model. This modeling provided insights into the contributions of various processes to the measured interaction forces, highlighting the importance of van der Waals and hydration forces.

18.
J Colloid Interface Sci ; 402: 58-67, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23643251

RESUMO

The attachment of the sodium salt of carboxymethyl cellulose (CMC) onto iron oxide and various silicate substrates in aqueous solution as a function of salt concentration and pH was studied by atomic force microscopy-based force spectroscopy (AFM) and quartz-crystal microbalance with dissipation monitoring (QCM-D). Both ionic strength and cation valency were found to influence substrate binding. Notably, QCM-D experiments strongly suggested that the solubility of CMC is directly impacted by the presence of CaCl2. Such data are critical for the design of new molecules for stabilizing mineral floc dispersions and for assessing the mobility of CMC-coated particles in the subsurface. Modeling of AFM data with an extended Ohshima theory showed that van der Waals and steric forces played a major role in the interactions between CMC and mineral substrates, and that hydration forces were also important.

19.
Environ Sci Technol ; 46(24): 13401-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23163600

RESUMO

The interactions between a silica substrate and iron particles were investigated using atomic force microscopy-based force spectroscopy (AFM). The micrometer- and nanosized iron particles employed were either bare or coated with carboxymethyl cellulose (CMC), a polymer utilized to stabilize iron particle suspensions. The effect of water chemistry on the forces of interaction was probed by varying ionic strength (with 100 mM NaCl and 100 mM CaCl2) or pH (4, 5.5, and 8) or by introducing 10 mg/L of humic acids (HA). When particles were uncoated, the forces upon approach between silica and iron were attractive at pH 4 and 5.5 and in 100 mM CaCl2 at pH 8, but they were negligible in 100 mM NaCl buffered to pH 8 and repulsive in water buffered to pH 8 and in HA solutions. HA produced electrosteric repulsion between iron particles and silica, likely due to its sorption to iron particles. HA sorption to silica was excluded on the basis of experiments conducted with a quartz-crystal microbalance with dissipation monitoring. Repulsion with CMC-coated iron was attributed to electrosteric forces, which were damped at high ionic strength. An extended DLVO model and a modified version of Ohshima's theory were successfully utilized to model AFM data.


Assuntos
Substâncias Húmicas/análise , Ferro/química , Fenômenos Mecânicos , Polímeros/química , Dióxido de Silício/química , Carboximetilcelulose Sódica/química , Intervalos de Confiança , Galvanoplastia , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Modelos Químicos , Nanopartículas/ultraestrutura , Concentração Osmolar , Material Particulado/química
20.
Langmuir ; 28(28): 10453-63, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22716956

RESUMO

The transport of particles through groundwater systems is governed by a complex interplay of mechanical and chemical forces that are ultimately responsible for binding to geological substrates. To understand these forces in the context of zero valent iron particles used in the remediation of groundwater, atomic force microscopy (AFM)-based force spectroscopy was employed to characterize the interactions between AFM tips modified with either carbonyl iron particles (CIP) or electrodeposited Fe as a function of counterion valency, temperature, particle morphology, and age. The measured interaction forces were always attractive for both fresh and aged CIP and electrodeposited iron, except in 100 mM NaCl, as a consequence of electrostatic attraction between the negatively charged mica and positively charged iron. In 100 mM NaCl, repulsive hydration forces appeared to dominate. Good agreement was found between the experimental data and predictions based on the extended DLVO (XDLVO) theory. The effect of aging on iron particle composition and morphology was assessed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) revealing that the aged particles comprising a zero valent iron core passivated by a mixture of iron oxides and hydroxides. Force spectroscopy showed that aging caused variations in the adhesive force due to the changes in particle morphology and contact area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...