Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2178, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272944

RESUMO

Recognition of the mRNA 5' end is a critical step needed for translation initiation. This step is performed by the cap binding protein eIF4E, which joins the larger eIF4G subunit to form the eIF4F complex. Trypanosomatids have a minimum of five different eIF4F-like complexes formed through specific but not well-defined interactions between four different eIF4E and five eIF4G homologues. The EIF4E6/EIF4G5 complex has been linked with the stage-specific translation of mRNAs encoding the major Trypanosoma brucei virulence factors. Here, to better define the molecular basis for the TbEIF4E6/TbEIF4G5 interaction, we describe the identification of the peptide interacting with TbEIF4E6 in the region comprising residues 79-166 of TbEIF4G5. The TbEIF4E6-TbEIF4G5_79-116 complex reconstituted with recombinant proteins is highly stable even in the absence of cap-4. The crystal structure of the complex was subsequently solved, revealing extensive interacting surfaces. Comparative analyses highlight the conservation of the overall structural arrangement of different eIF4E/eIF4G complexes. However, highly different interacting surfaces are formed with distinct binding contacts occurring both in the canonical and noncanonical elements within eIF4G and the respective eIF4E counterpart. These specific pairs of complementary interacting surfaces are likely responsible for the selective association needed for the formation of distinct eIF4F complexes in trypanosomatids.


Assuntos
Fator de Iniciação 4F em Eucariotos , Trypanosoma brucei brucei , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Trypanosoma brucei brucei/genética , Ligação Proteica , RNA Mensageiro/metabolismo
2.
Biochimie ; 219: 63-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37673171

RESUMO

Rickettsia typhi is the causative agent of murine typhus (endemic typhus), a febrile illness that can be self-contained, though in some cases it can progress to death. The three dimensional structure of Methionyl-tRNA Synthetase from R. typhi (RtMetRS) in complex with its substrate l-methionine was solved by molecular replacement and refined at 2.30 Å resolution in space group P1 from one X-ray diffraction dataset. Processing and refinement trials were decisive to establish the lower symmetry space group and indicated the presence of twinning with four domains. RtMetRS belongs to the MetRS1 family and was crystallized with the CP domain in an open conformation, what is distinctive from other MetRS1 enzymes whose structures were solved with a bound L-methionine (therefore, in a closed conformation). This conformation resembles the ones observed in the MetRS2 family.


Assuntos
Metionina tRNA Ligase , Animais , Camundongos , Metionina tRNA Ligase/química , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/metabolismo , Aminoácidos , Rickettsia typhi/metabolismo , Difração de Raios X , Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...