Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1371118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873612

RESUMO

Background: The respiratory tract microbiome is essential for human health and well-being and is determined by genetic, lifestyle, and environmental factors. Patients with Common Variable Immunodeficiency (CVID) suffer from respiratory and intestinal tract infections, leading to chronic diseases and increased mortality rates. While CVID patients' gut microbiota have been analyzed, data on the respiratory microbiome ecosystem are limited. Objective: This study aims to analyze the bacterial composition of the oropharynx of adults with CVID and its link with clinical and immunological features and risk for respiratory acute infections. Methods: Oropharyngeal samples from 72 CVID adults and 26 controls were collected in a 12-month prospective study. The samples were analyzed by metagenomic bacterial 16S ribosomal RNA sequencing and processed using the Quantitative Insights Into Microbial Ecology (QIME) pipeline. Differentially abundant species were identified and used to build a dysbiosis index. A machine learning model trained on microbial abundance data was used to test the power of microbiome alterations to distinguish between healthy individuals and CVID patients. Results: Compared to controls, the oropharyngeal microbiome of CVID patients showed lower alpha- and beta-diversity, with a relatively increased abundance of the order Lactobacillales, including the family Streptococcaceae. Intra-CVID analysis identified age >45 years, COPD, lack of IgA, and low residual IgM as associated with a reduced alpha diversity. Expansion of Haemophilus and Streptococcus genera was observed in patients with undetectable IgA and COPD, independent from recent antibiotic use. Patients receiving azithromycin as antibiotic prophylaxis had a higher dysbiosis score. Expansion of Haemophilus and Anoxybacillus was associated with acute respiratory infections within six months. Conclusions: CVID patients showed a perturbed oropharynx microbiota enriched with potentially pathogenic bacteria and decreased protective species. Low residual levels of IgA/IgM, chronic lung damage, anti antibiotic prophylaxis contributed to respiratory dysbiosis.


Assuntos
Imunodeficiência de Variável Comum , Disbiose , Orofaringe , Infecções Respiratórias , Humanos , Imunodeficiência de Variável Comum/microbiologia , Imunodeficiência de Variável Comum/imunologia , Imunodeficiência de Variável Comum/complicações , Orofaringe/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Infecções Respiratórias/microbiologia , Infecções Respiratórias/imunologia , Microbiota , Estudos Prospectivos , Idoso , RNA Ribossômico 16S/genética , Doença Aguda , Bactérias/classificação , Bactérias/genética , Estudos de Casos e Controles
2.
Nat Commun ; 12(1): 1929, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771987

RESUMO

Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , Neurônios/metabolismo , Organoides/metabolismo , Células Cultivadas , Pré-Escolar , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Leigh/metabolismo , Masculino , Metabolômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Morfogênese/genética , Neurônios/citologia , Proteômica/métodos , Análise de Célula Única/métodos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...