Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Environ Res Public Health ; 12(1): 746-66, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25594779

RESUMO

A mathematical model for the simulation of the removal of hydrophilic compounds using biotrickling filtration was developed. The model takes into account that biotrickling filters operate by using an intermittent spraying pattern. During spraying periods, a mobile liquid phase was considered, while during non-spraying periods, a stagnant liquid phase was considered. The model was calibrated and validated with data from laboratory- and industrial-scale biotrickling filters. The laboratory experiments exhibited peaks of pollutants in the outlet of the biotrickling filter during spraying periods, while during non-spraying periods, near complete removal of the pollutant was achieved. The gaseous outlet emissions in the industrial biotrickling filter showed a buffered pattern; no peaks associated with spraying or with instantaneous variations of the flow rate or inlet emissions were observed. The model, which includes the prediction of the dissolved carbon in the water tank, has been proven as a very useful tool in identifying the governing processes of biotrickling filtration.


Assuntos
Filtração/métodos , Modelos Teóricos , Compostos Orgânicos Voláteis/metabolismo , Reatores Biológicos , Carbono
2.
Bioprocess Biosyst Eng ; 36(7): 975-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23053419

RESUMO

This paper investigates the removal of isopropanol by gas-phase biotrickling filtration. Two plastic packing materials, one structured and one random, have been evaluated in terms of oxygen mass transfer and isopropanol removal efficiency. Oxygen mass transfer experiments were performed at gas velocities of 104 and 312 m h⁻¹ and liquid velocities between 3 and 33 m h⁻¹. Both materials showed similar mass transfer coefficients up to liquid velocities of 15 m h⁻¹. At greater liquid velocities, the structured packing exhibited greater oxygen mass transfer coefficients. Biotrickling filtration experiments were carried out at inlet loads (IL) from 20 to 65 g C m⁻³ h⁻¹ and empty bed residence times (EBRT) from 14 to 160 s. To simulate typical industrial emissions, intermittent isopropanol loading (16 h/day, 5 day/week) and intermittent spraying frequency (15 min/1.5 h) were applied. Maximum elimination capacity of 51 g C m⁻³ h⁻¹ has been obtained for the random packing (IL of 65 g C m⁻³ h⁻¹, EBRT of 50 s). The decrease in irrigation frequency to 15 min every 3 h caused a decrease in the outlet emissions from 86 to 59 mg C Nm⁻³ (inlet of 500 mg C Nm⁻³). The expansion of spraying to night and weekend periods promoted the degradation of the isopropanol accumulated in the water tank during the day, reaching effluent concentrations as low as 44 mg C Nm⁻³. After a 7-week starvation period, the performance was recovered in less than 10 days, proving the robustness of the process.


Assuntos
2-Propanol/isolamento & purificação , Filtração/métodos , Oxigênio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-22486666

RESUMO

Two biotrickling filters were set up at two wastewater treatment plants (WWTP) in The Netherlands to investigate their effectiveness for treatment of odorous waste gases from different sources. One biotrickling filter was installed at Nieuwe Waterweg WWTP in Hook of Holland to study the hydrogen sulfide removal from headworks waste air. The other reactor was installed at Harnaschpolder WWTP (treating wastewater of the city of The Hague) to remove mercaptans and other organic compounds (odor) coming from the emissions of the anaerobic tanks of the biological nutrient removal (BNR) activated sludge. The performance of both units showed a stable and highly efficient operation under seasonal variations of load and temperature over nearly one year of monitoring. The Nieuwe Waterweg unit achieved removals of up to 99%, corresponding to a maximum daily average elimination capacity (EC) of 55.8 g H(2)S/m(3)/h at an empty bed residence time (EBRT) as short as 8.5 s. Odor reduction at the Harnaschpolder unit was 95% at an EBRT of 18.9 s, with average outlet concentration lower than the objective value which was established as 1000 European Odor Units (OU(E)/m(3)).


Assuntos
Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Poluição do Ar/prevenção & controle , Reatores Biológicos/microbiologia , Filtração/métodos , Anaerobiose , Biodegradação Ambiental , Filtração/instrumentação , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Países Baixos , Odorantes/análise , Projetos Piloto , Hidróxido de Sódio/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Eliminação de Resíduos Líquidos
4.
J Air Waste Manag Assoc ; 59(8): 998-1006, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19728494

RESUMO

A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.


Assuntos
Poluição do Ar/prevenção & controle , Filtração/métodos , Decoração de Interiores e Mobiliário , Manufaturas , Compostos Orgânicos Voláteis/análise , Biodegradação Ambiental , Reatores Biológicos , Pintura , Projetos Piloto , Compostos Orgânicos Voláteis/metabolismo
5.
Chemosphere ; 73(9): 1533-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18848344

RESUMO

Laboratory scale-studies on the biodegradation of a 1:1:1 weight mixture of three oxygenated volatile organic compounds (VOCs), ethanol, ethyl acetate, and methyl-ethyl ketone (MEK) in a biotrickling filter (BTF) were carried out using two identically sized columns, filled with different polypropylene rings. The performance of the BTFs was examined for a period of 10 months applying several operational strategies. Similar performance was obtained for both supports. Intermittent flow rate of trickling liquid was shown beneficial to improve the removal efficiency (RE). Continuous feeding of VOC resulted in an excessive accumulation of biomass so high pressure drop was developed in less than 20-30 d of operation. Intermittent VOC loading with night and weekend feed cut-off periods passing dry air, but without addition of water, was shown as a successful operational mode to control the thickness of the biofilm. In this case, operation at high inlet loads (ILs) was extended for more than 75 d maintaining high REs and low pressure drops. Outlet emission concentrations lower than 100 mg Cm(-3) were obtained for ILs up to 100 g Cm(-3)h(-1) working at 15s of empty bed residence time. The most easily biodegradable compounds ethanol and ethyl acetate were used primarily than MEK. After a 3-wk-starvation period, the system performance was almost restored since the first d of operation, being the removal of the less biodegradable compound, MEK, partially deteriorated.


Assuntos
Poluentes Atmosféricos/metabolismo , Filtração/métodos , Compostos Orgânicos Voláteis/metabolismo , Poluentes Químicos da Água/metabolismo , Acetatos/análise , Acetatos/metabolismo , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Biodegradação Ambiental , Butanonas/análise , Butanonas/metabolismo , Etanol/análise , Etanol/metabolismo , Filtração/instrumentação , Oxigênio/química , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...