Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Thrombolysis ; 32(2): 158-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21424266

RESUMO

Atherosclerosis has an important inflammatory component. Macrophages accumulating in atherosclerotic arteries produce prostaglandin E(2) (PGE(2)), a main inflammatory mediator. Platelets express inhibitory receptors (EP(2), EP(4)) and a stimulatory receptor (EP(3)) for this prostanoid. Recently, it has been reported in ApoE(-/-) mice that PGE(2) accumulating in inflammatory atherosclerotic lesions might contribute to atherothrombosis after plaque rupture by activating platelet EP(3), and EP(3) blockade has been proposed to be a promising new approach in anti-thrombotic therapy. The aim of our investigation was to study the role of PGE(2) in human atherosclerotic plaques on human platelet function and thrombus formation. Plaque PGE(2) might either activate or inhibit platelets depending on stimulation of either EP(3) or EP(4), respectively. We found that the two EP(3)-antagonists AE5-599 (300 nM) and AE3-240 (300 nM) specifically and completely inhibited the synergistic effect of the EP(3)-agonist sulprostone on U46619-induced platelet aggregation in blood. However, these two EP(3)-antagonists neither inhibited atherosclerotic plaque-induced platelet aggregation, GPIIb/IIIa exposure, dense and alpha granule secretion in blood nor reduced plaque-induced platelet thrombus formation under arterial flow. The EP(4)-antagonist AE3-208 (1-3 µM) potentiated in combination with PGE(2) (1 µM) ADP-induced aggregation, demonstrating that PGE(2) enhances platelet aggregation when the inhibitory EP(4)-receptor is inactivated. However, plaque-induced platelet aggregation was not augmented after platelet pre-treatment with AE3-208, indicating that plaque PGE(2) does not stimulate the EP(4)-receptor. We found that PGE(2) was present in plaques only at very low levels (15 pg PGE(2)/mg plaque). We conclude that PGE(2) in human atherosclerotic lesions does not modulate (i.e. stimulate or inhibit) atherothrombosis in blood after plaque rupture.


Assuntos
Plaquetas/metabolismo , Estenose das Carótidas/metabolismo , Dinoprostona/metabolismo , Placa Aterosclerótica/metabolismo , Agregação Plaquetária , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Trombose/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Abortivos não Esteroides/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Plaquetas/patologia , Estenose das Carótidas/genética , Estenose das Carótidas/patologia , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Naftalenos , Fenilbutiratos , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores de Prostaglandina E Subtipo EP3/agonistas , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Ruptura Espontânea , Trombose/genética , Vasoconstritores/farmacologia
2.
Thromb J ; 8: 9, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20465804

RESUMO

BACKGROUND: Poor platelet inhibition by aspirin or clopidogrel has been associated with adverse outcomes in patients with cardiovascular diseases. A reliable and facile assay to measure platelet inhibition after treatment with aspirin and a P2Y12 antagonist is lacking. Multiple electrode aggregometry (MEA), which is being increasingly used in clinical studies, is sensitive to platelet inhibition by aspirin and clopidogrel, but a critical evaluation of MEA monitoring of dual anti-platelet therapy with aspirin and P2Y12 antagonists is missing. DESIGN AND METHODS: By performing in vitro and ex vivo experiments, we evaluated in healthy subjects the feasibility of using MEA to monitor platelet inhibition of P2Y12 antagonists (clopidogrel in vivo, cangrelor in vitro) and aspirin (100 mg per day in vivo, and 1 mM or 5.4 mM in vitro) alone, and in combination. Statistical analyses were performed by the Mann-Whitney rank sum test, student' t-test, analysis of variance followed by the Holm-Sidak test, where appropriate. RESULTS: ADP-induced platelet aggregation in hirudin-anticoagulated blood was inhibited by 99.3 +/- 1.4% by in vitro addition of cangrelor (100 nM; p < 0.001) and by 64 +/- 35% by oral clopidogrel (600 mg) intake (p < 0.05; values are means +/- SD). Pre-incubation of blood with aspirin (1 mM) or oral aspirin intake (100 mg/day for 1 week) inhibited arachidonic acid (AA)-stimulated aggregation >95% and 100 +/- 3.2%, respectively (p < 0.01). Aspirin did not influence ADP-induced platelet aggregation, either in vitro or ex vivo. Oral intake of clopidogrel did not significantly reduce AA-induced aggregation, but P2Y12 blockade by cangrelor (100 nM) in vitro diminished AA-stimulated aggregation by 53 +/- 26% (p < 0.01). A feasibility study in healthy volunteers showed that dual anti-platelet drug intake (aspirin and clopidogrel) could be selectively monitored by MEA. CONCLUSIONS: Selective platelet inhibition by aspirin and P2Y12 antagonists alone and in combination can be rapidly measured by MEA. We suggest that dual anti-platelet therapy with these two types of anti-platelet drugs can be optimized individually by measuring platelet responsiveness to ADP and AA with MEA before and after drug intake.

4.
J Am Coll Cardiol ; 55(11): 1147-58, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20223370

RESUMO

OBJECTIVES: The aim of this study was to understand the initial mechanism of arterial thrombus formation induced by vulnerable human atherosclerotic plaques to re-assess and improve current antithrombotic strategies. BACKGROUND: Rupture of atherosclerotic plaques causes arterial thrombus formation that might lead to myocardial infarction and ischemic stroke. Atherothrombosis is considered as an inseparable tangle of platelet activation and coagulation processes, involving plaque components such as tissue factor (TF) and collagen as well as blood-borne TF and coagulation factor XIIa (FXIIa). A combination of anticoagulants and antiplatelet agents is the present treatment. METHODS: Human atheromatous plaque material was exposed to blood or blood components at physiological calcium/magnesium concentration. Platelet aggregation and coagulation were measured under static and arterial flow conditions by state-of-the-art microscopic and physiological techniques. Plaque TF, plaque collagen, FXIIa, and platelet glycoprotein VI (GPVI) were specifically inhibited. RESULTS: Plaques induced thrombus formation by 2 discrete steps. The rapid first phase of GPVI-mediated platelet adhesion and aggregation onto plaque collagen occurred within 1 min. The second phase of coagulation started after a delay of >3 min with the formation of thrombin and fibrin, and was driven entirely by plaque TF. Coagulation occurred only in flow niches provided by platelet aggregates, with no evidence for a role of blood-borne TF and FXIIa. Inhibition of GPVI but not plaque TF inhibited plaque-induced thrombus formation. CONCLUSIONS: The major thrombogenic plaque components--collagen and TF--induce platelet activation and coagulation, respectively, in 2 consecutive steps. Targeting specifically the first step is crucial and might be sufficient to inhibit atherothrombus formation.


Assuntos
Aterosclerose/complicações , Ativação Plaquetária/fisiologia , Trombose/etiologia , Trombose/fisiopatologia , Aterosclerose/patologia , Colágeno , Feminino , Fibrina , Humanos , Masculino , Glicoproteínas da Membrana de Plaquetas , Trombina , Tromboplastina
5.
Thromb Haemost ; 97(3): 435-43, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17334511

RESUMO

Anti-platelet drugs are used to prevent intra-arterial thrombus formation after rupture of atherosclerotic plaques. Until now, the inhibitory effect of present and future anti-platelet drugs such as aspirin, ADP receptor P2Y(1)/P2Y(12) antagonists and glycoprotein (GP) Ibalpha inhibitors on the interaction of platelets with human plaques is not known. To study those effects we obtained human atherosclerotic plaques by surgical endarterectomy. Plaques induced maximal platelet aggregation in hirudinized platelet-rich plasma (PRP) and blood that was effectively inhibited by aspirin, the P2Y(1) antagonist MRS2179 and the P2Y(12) antagonist AR-C69931MX, but not by GPIbalpha blockade with the mAB 6B4. Inhibition of platelet aggregation by MRS2179 was 74 +/- 37% and 68 +/- 20%, by AR-C69931MX 94 +/- 7% and 80 +/- 6%, and by aspirin 88 +/- 19% and 64 +/- 28%, in PRP and blood, respectively (mean +/- SD; n = 6-12 with plaques from 6 patients). The combination of both ADP receptor antagonists completely inhibited plaque-induced platelet aggregation in hirudinized PRP and blood. Under arterial flow conditions (1,500s(-1)), blockade of platelet GPIbalpha resulted in a strong decrease of plaque-stimulated platelet adhesion/aggregate formation of 77 +/- 5% (mean +/- SD; n = 4). Furthermore, MRS2179, AR-C69931MX and their combination reduced plaque-dependent platelet aggregate formation by 35 +/- 14%, 32 +/- 13% and 58 +/- 12% (mean +/- SD; n = 5), respectively. Aspirin was without significant effect. In conclusion, a GPIbalpha-blocking antibody, as well as P2Y(1) and P2Y(12) receptor antagonists, alone or in combination, reduce in contrast to aspirin human plaque-induced platelet thrombus formation under arterial flow. Although these new anti-platelet agents inhibit platelet thrombus formation after plaque rupture, more efficient platelet blockers are required.


Assuntos
Aspirina/farmacologia , Aterosclerose/complicações , Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Antagonistas do Receptor Purinérgico P2 , Trombose/prevenção & controle , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Anticorpos Monoclonais/farmacologia , Aspirina/uso terapêutico , Aterosclerose/sangue , Testes de Coagulação Sanguínea/métodos , Plaquetas/metabolismo , Estenose das Carótidas/complicações , Relação Dose-Resposta a Droga , Hemorreologia , Humanos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/imunologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Trombose/sangue , Trombose/etiologia , Trombose/metabolismo , Fatores de Tempo , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...