Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38781425

RESUMO

PROTON GRADIENT REGULATION5 (PGR5) is thought to promote cyclic electron flow, and its deficiency impairs photosynthetic control and increases photosensitivity of photosystem (PS) I, leading to seedling lethality under fluctuating light (FL). By screening for Arabidopsis (Arabidopsis thaliana) suppressor mutations that rescue the seedling lethality of pgr5 plants under FL, we identified a portfolio of mutations in 12 different genes. These mutations affect either PSII function, cytochrome b6f (cyt b6f) assembly, plastocyanin (PC) accumulation, the CHLOROPLAST FRUCTOSE-1,6-BISPHOSPHATASE1 (cFBP1), or its negative regulator ATYPICAL CYS HIS-RICH THIOREDOXIN2 (ACHT2). The characterization of the mutants indicates that the recovery of viability can in most cases be explained by the restoration of PSI donor side limitation, which is caused by reduced electron flow to PSI due to defects in PSII, cyt b6f, or PC. Inactivation of cFBP1 or its negative regulator ACHT2 results in increased levels of the NADH dehydrogenase-like complex. This increased activity may be responsible for suppressing the pgr5 phenotype under FL conditions. Plants that lack both PGR5 and DE-ETIOLATION-INDUCED PROTEIN1 (DEIP1)/NEW TINY ALBINO1 (NTA1), previously thought to be essential for cyt b6f assembly, are viable and accumulate cyt b6f. We suggest that PGR5 can have a negative effect on the cyt b6f complex and that DEIP1/NTA1 can ameliorate this negative effect.

3.
Plant Physiol ; 190(3): 1866-1882, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946785

RESUMO

The PROTON GRADIENT REGULATION5 (PGR5) protein is required for trans-thylakoid proton gradient formation and acclimation to fluctuating light (FL). PGR5 functionally interacts with two other thylakoid proteins, PGR5-like 1 (PGRL1) and 2 (PGRL2); however, the molecular details of these interactions are largely unknown. In the Arabidopsis (Arabidopsis thaliana) pgr5-1 mutant, the PGR5G130S protein accumulates in only small amounts. In this work, we generated a knockout allele of PGR5 (pgr5-Cas) using CRISPR-Cas9 technology. Like pgr5-1, pgr5-Cas is seedling-lethal under FL, but photosynthesis and particularly cyclic electron flow, as well as chlorophyll content, are less severely affected in both pgr5-Cas and pgrl1ab (which lacks PGRL1 and PGR5) than in pgr5-1. These differences are associated with changes in the levels of 260 proteins, including components of the Calvin-Benson cycle, photosystems II and I, and the NDH complex, in pgr5-1 relative to the wild type (WT), pgr5-Cas, and pgrl1ab. Some of the differences between pgr5-1 and the other mutant lines could be tentatively assigned to second-site mutations in the pgr5-1 line, identified by whole-genome sequencing. However, others, particularly the more pronounced photosynthetic defects and PGRL1 depletion (compared to pgr5-Cas), are clearly due to specific negative effects of the amino-acid substitution in PGR5G130S, as demonstrated by complementation analysis. Moreover, pgr5-1 and pgr5-Cas plants are less tolerant to long-term exposure to high light than pgrl1ab plants. These results imply that, in addition to the previously reported necessity of PGRL1 for optimal PGR5 function, PGR5 is required alongside PGRL1 to avoid harmful effects on plant performance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Prótons , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons , Fotossíntese/genética , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Membrana/metabolismo
4.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204867

RESUMO

Non-photochemical quenching (NPQ) protects plants from the detrimental effects of excess light. NPQ is rapidly induced by the trans-thylakoid proton gradient during photosynthesis, which in turn requires PGR5/PGRL1-dependent cyclic electron flow (CEF). Thus, Arabidopsis thaliana plants lacking either protein cannot induce transient NPQ and die under fluctuating light conditions. Conversely, the NADPH-dependent thioredoxin reductase C (NTRC) is required for efficient energy utilization and plant growth, and in its absence, transient and steady-state NPQ is drastically increased. How NTRC influences NPQ and functionally interacts with CEF is unclear. Therefore, we generated the A. thaliana line pgr5 ntrc, and found that the inactivation of PGR5 suppresses the high transient and steady-state NPQ and impaired growth phenotypes observed in the ntrc mutant under short-day conditions. This implies that NTRC negatively influences PGR5 activity and, accordingly, the lack of NTRC is associated with decreased levels of PGR5, possibly pointing to a mechanism to restrict upregulation of PGR5 activity in the absence of NTRC. When exposed to high light intensities, pgr5 ntrc plants display extremely impaired photosynthesis and growth, indicating additive effects of lack of both proteins. Taken together, these findings suggest that the interplay between NTRC and PGR5 is relevant for photoprotection and that NTRC might regulate PGR5 activity.

5.
Nat Commun ; 12(1): 3941, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168134

RESUMO

In plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself. Conversely, high levels of PGRL2 destabilize PGR5 even when PGRL1 is present. In the absence of both PGRL1 and PGRL2, PGR5 alters thylakoid electron flow and impairs plant growth. Consequently, PGR5 can operate in CEF on its own, and is the target of the CEF inhibitor antimycin A, but its activity must be modulated by PGRL1. We conclude that PGRL1 channels PGR5 activity, and that PGRL2 triggers the degradation of PGR5 when the latter cannot productively interact with PGRL1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Antimicina A/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Fluorescência Verde/genética , Luz , Proteínas de Membrana/genética , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plantas Geneticamente Modificadas , Estabilidade Proteica
6.
Plant J ; 99(3): 521-535, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31002470

RESUMO

GUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses. Absence of GUN1 aggravates the effects of decreased FUG1 levels on chloroplast protein translation, resulting in transiently more pronounced phenotypes regarding photosynthesis, leaf colouration, growth and cold acclimation. The gun1-103 mutation also enhances variegation in the var2 mutant, increasing the fraction of white sectors, while fug1-3 suppresses the var2 phenotype. The transcriptomes of fug1-3 and gun1-103 plants are very similar, but absence of GUN1 alone has almost no effect on protein levels, whereas steady-state levels of chloroplast proteins are markedly decreased in fug1-3. In fug1 gun1 double mutants, effects on transcriptomes and particularly on proteomes are enhanced. Our results show that GUN1 function becomes critical when chloroplast proteostasis is perturbed by decreased rates of synthesis (fug1) or degradation (var2) of chloroplast proteins, or by low temperatures. The functions of FUG1 and GUN1 appear to be related, corroborating the view that GUN1 helps to maintain chloroplast protein homeostasis (proteostasis).


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Proteínas de Ligação a DNA/genética , Fator de Iniciação 2 em Eucariotos/genética , Proteostase/genética , Aclimatação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...