Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2744: 119-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683314

RESUMO

Chelex-based DNA extractions are well suited for student DNA barcoding research because they are simple, safe, and inexpensive and can be performed without specialized laboratory equipment, allowing them to be performed in classrooms or at home. Extracted DNA is stable in Chelex solution for at least a week at ambient temperature, allowing collection of DNA samples from remote students. These extractions provide quality DNA for many taxa and are optimal for barcoding invertebrates, especially in combination with novel cytochrome c oxidase I (COI) primer cocktails and PCR cycling conditions.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Reação em Cadeia da Polimerase , Código de Barras de DNA Taxonômico/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Reação em Cadeia da Polimerase/métodos , Invertebrados/genética , Invertebrados/classificação , DNA/genética , DNA/isolamento & purificação
2.
Methods Mol Biol ; 2744: 517-523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683339

RESUMO

This rapid, equipment-free DNA isolation procedure using chromatography paper is a simple method that can be performed in less than 30 min and requires no wet lab experience. With minimal expense, it offers an affordable alternative for anyone wanting to explore biodiversity. It also provides an excellent option for use in classrooms or other activities that are time limited. The method works best for plants or lichens, producing stable DNA on Whatman® chromatography paper at room temperature, which can be eluted as needed.


Assuntos
Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , DNA/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Plantas/genética , Cromatografia/métodos , Líquens/genética
3.
Genes (Basel) ; 14(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37107532

RESUMO

DNA polymerase delta is the primary polymerase that is involved in undamaged nuclear lagging strand DNA replication. Our mass-spectroscopic analysis has revealed that the human DNA polymerase δ is acetylated on subunits p125, p68, and p12. Using substrates that simulate Okazaki fragment intermediates, we studied alterations in the catalytic properties of acetylated polymerase and compared it to the unmodified form. The current data show that the acetylated form of human pol δ displays a higher polymerization activity compared to the unmodified form of the enzyme. Additionally, acetylation enhances the ability of the polymerase to resolve complex structures such as G-quadruplexes and other secondary structures that might be present on the template strand. More importantly, the ability of pol δ to displace a downstream DNA fragment is enhanced upon acetylation. Our current results suggest that acetylation has a profound effect on the activity of pol δ and supports the hypothesis that acetylation may promote higher-fidelity DNA replication.


Assuntos
DNA Polimerase III , Lisina , Humanos , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Lisina/genética , Acetilação , Replicação do DNA , DNA/genética , DNA/metabolismo
4.
Sci Rep ; 6: 34808, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708426

RESUMO

The activation of a silent gene locus is thought to involve pioneering transcription factors that initiate changes in the local chromatin structure to increase promoter accessibility and binding of downstream effectors. To better understand the molecular requirements for the first steps of locus activation, we investigated whether acetylation of a single nucleosome is sufficient to alter DNA accessibility within a condensed 25-nucleosome array. We found that acetylation mimics within the histone H4 tail domain increased accessibility of the surrounding linker DNA, with the increased accessibility localized to the immediate vicinity of the modified nucleosome. In contrast, acetylation mimics within the H3 tail had little effect, but were able to synergize with H4 tail acetylation mimics to further increase accessibility. Moreover, replacement of the central nucleosome with a nucleosome free region also resulted in increased local, but not global DNA accessibility. Our results indicate that modification or disruption of only a single target nucleosome results in significant changes in local chromatin architecture and suggest that very localized chromatin modifications imparted by pioneer transcription factors are sufficient to initiate a cascade of events leading to promoter activation.


Assuntos
DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Cromatina/ultraestrutura , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Histonas/genética , Lisina/metabolismo , Lytechinus/genética , Nucleossomos/genética , Moldes Genéticos , Xenopus/genética
5.
J Biol Chem ; 289(39): 27342-27351, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122771

RESUMO

The core histone tail domains mediate inter-nucleosomal interactions that direct folding and condensation of nucleosome arrays into higher-order chromatin structures. The histone H4 tail domain facilitates inter-array interactions by contacting both the H2A/H2B acidic patch and DNA of neighboring nucleosomes. Likewise, H4 tail-H2A contacts stabilize array folding. However, whether the H4 tail domains stabilize array folding via inter-nucleosomal interactions with the DNA of neighboring nucleosomes remains unclear. We utilized defined oligonucleosome arrays containing a single specialized nucleosome with a photo-inducible cross-linker in the N terminus of the H4 tail to characterize these interactions. We observed that the H4 tail participates exclusively in intra-array interactions with DNA in unfolded arrays. These interactions are diminished during array folding, yet no inter-nucleosome, intra-array H4 tail-DNA contacts are observed in condensed chromatin. However, we document contacts between the N terminus of the H4 tail and H2A. Installation of acetylation mimics known to disrupt H4-H2A surface interactions did not increase observance of H4-DNA inter-nucleosomal interactions. These results suggest the multiple functions of the H4 tail require targeted distinct interactions within condensed chromatin.


Assuntos
DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Dobramento de Proteína , Proteínas de Xenopus/metabolismo , Acetilação , Animais , DNA/química , DNA/genética , Histonas/química , Histonas/genética , Nucleossomos/química , Nucleossomos/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Xenopus , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
6.
Chromosoma ; 123(1-2): 3-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23996014

RESUMO

Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array-array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Acetilação , Animais , Humanos , Estrutura Terciária de Proteína
7.
J Biol Chem ; 286(20): 17521-9, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454907

RESUMO

We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.


Assuntos
DNA/química , Endonucleases Flap/química , Nucleossomos/química , Animais , DNA/genética , DNA/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos , Nucleossomos/genética , Nucleossomos/metabolismo , Especificidade por Substrato , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...