Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
3.
Neural Regen Res ; 19(7): 1523-1531, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051895

RESUMO

ABSTRACT: Characterized by positive symptoms (such as changes in behavior or thoughts, including delusions and hallucinations), negative symptoms (such as apathy, anhedonia, and social withdrawal), and cognitive impairments, schizophrenia is a chronic, severe, and disabling mental disorder with late adolescence or early adulthood onset. Antipsychotics are the most commonly used drugs to treat schizophrenia, but those currently in use do not fully reverse all three types of symptoms characterizing this condition. Schizophrenia is frequently misdiagnosed, resulting in a delay of or inappropriate treatment. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia. The recent studies reviewed included microRNA profiling in blood- and urine-based materials and nervous tissue materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for schizophrenia in adults could be miR-22-3p, -30e-5p, -92a-3p, -148b-5p, -181a-3p, -181a-5p, -181b-5p, -199b-5p, -137 in whole blood, and miR-130b, -193a-3p in blood plasma. Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b, -193a-3p, -132, -195, -30e, -432 in blood plasma. Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.

4.
Neural Regen Res ; 18(10): 2108-2118, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056117

RESUMO

Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chronic seizures are difficult to cure. MicroRNAs are widely expressed in the central nervous system and play important roles in the pathogenesis of several neurological disorders, including epilepsy. A variety of animals (mostly mice and rats) have been used to induce experimental epilepsy using different protocols and miRNA profiling performed. Most of the recent studies reviewed had performed miRNA profiling in hippocampal tissues and a large number of microRNAs were dysregulated when compared to controls. Most notably, miR-132-3p, -146a-5p, -10a-5p, -21a-3p, -27a-3p, -142a-5p, -212-3p, -431-5p, and -155 were upregulated in both the mouse and rat studies. Overexpression of miR-137 and miR-219 decreased seizure severity in a mouse epileptic model, and suppression of miR-451, -10a-5p, -21a-5p, -27a-5p, -142a-5p, -431-5p, -155, and -134 had a positive influence on seizure behavior. In the rat studies, overexpression of miR-139-5p decreased neuronal damage in drug-resistant rats and inhibition of miR-129-2-3p, -27a-3p, -155, -134, -181a, and -146a had a positive effect on seizure behavior and/or reduced the loss of neuronal cells. Further studies are warranted using adult female and immature male and female animals. It would also be helpful to test the ability of specific agomirs and antagomirs to control seizure activity in a subhuman primate model of epilepsy such as adult marmosets injected intraperitoneally with pilocarpine or cynomolgus monkeys given intrahippocampal injections of kainic acid.

5.
Neural Regen Res ; 18(4): 716-726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204827

RESUMO

Temporal lobe epilepsy is the most common form of focal epilepsy in adults, accounting for one third of all diagnosed epileptic patients, with seizures originating from or involving mesial temporal structures such as the hippocampus, and many of these patients being refractory to treatment with anti-epileptic drugs. Temporal lobe epilepsy is the most common childhood neurological disorder and, compared with adults, the symptoms are greatly affected by age and brain development. Diagnosis of temporal lobe epilepsy relies on clinical examination, patient history, electroencephalographic recordings, and brain imaging. Misdiagnosis or delay in diagnosis is common. A molecular biomarker that could distinguish epilepsy from healthy subjects and other neurological conditions would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Among possible biomarkers of pathological changes as well as potential therapeutic targets in the epileptic brain are microRNAs. Most of the recent studies had performed microRNA profiling in body fluids such as blood plasma and blood serum and brain tissues such as temporal cortex tissue and hippocampal tissue. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies that could serve as potential biomarkers. For example, in adults with temporal lobe epilepsy, possible biomarkers are miR-199a-3p in blood plasma and miR-142-5p in blood plasma and blood serum. In adults with mesial temporal lobe epilepsy, possible biomarkers are miR-153 in blood plasma and miR-145-3p in blood serum. However, in many of the studies involving patients who receive one or several anti-epileptic drugs, the influence of these on microRNA expression in body fluids and brain tissues is largely unknown. Further studies are warranted with children with temporal lobe epilepsy and consideration should be given to utilizing mouse or rat and non-human primate models of temporal lobe epilepsy. The animal models could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.

6.
Neural Regen Res ; 17(11): 2368-2375, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35535873

RESUMO

Glaucoma is a neurodegenerative disease in which optic nerve damage and visual field defects occur. It is a leading cause of irreversible blindness. Its pathogenesis is largely unknown although several risk factors have been identified, with an increase in intraocular pressure being the main one. Lowering of intraocular pressure is the only treatment available. Open-angle glaucoma is the most common form of the condition, accounting for ~90% of all cases of glaucoma, with primary open-angle glaucoma and exfoliation glaucoma being the most frequent types. There are strong indications that microRNAs play important roles in the pathogenesis of primary open-angle glaucoma. Most of the recent studies reviewed had performed microRNA profiling in aqueous humor from glaucoma patients compared to controls who were chiefly cataract patients. A very large number of microRNAs were dysregulated but with limited overlap between individual studies. MiRNAs in aqueous humor that could be possible targets for therapeutic intervention are miR-143-3p, miR-125b-5p, and miR-1260b. No overlap of findings occurred within the dysregulated miRNAs for blood plasma, blood serum, peripheral blood mononuclear cells, and tears of primary open-angle glaucoma patients. Several important limitations were identified in these studies. Further studies are warranted of microRNA expression in aqueous humor and blood samples of primary open-angle glaucoma patients in the early stages of the disease so that validated biomarkers can be identified and treatment initiated. In addition, whether modifying the levels of specific microRNAs in aqueous humor or tears has a beneficial effect on intraocular pressure and ophthalmic examination of the eyes should be investigated using suitable animal models of glaucoma.

7.
Neural Regen Res ; 17(10): 2108-2116, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259816

RESUMO

The incidence of neurodegenerative diseases is increasing due to changing age demographics and the incidence of sports-related traumatic brain injury is tending to increase over time. Currently approved medicines for neurodegenerative diseases only temporarily reduce the symptoms but cannot cure or delay disease progression. Cell transplantation strategies offer an alternative approach to facilitating central nervous system repair, but efficacy is limited by low in vivo survival rates of cells that are injected in suspension. Transplanting cells that are attached to or encapsulated within a suitable biomaterial construct has the advantage of enhancing cell survival in vivo. A variety of biomaterials have been used to make constructs in different types that included nanoparticles, nanotubes, microspheres, microscale fibrous scaffolds, as well as scaffolds made of gels and in the form of micro-columns. Among these, Tween 80-methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles loaded with rhynchophylline had higher transport across a blood-brain barrier model and decreased cell death in an in vitro model of Alzheimer's disease than rhynchophylline or untreated nanoparticles with rhynchophylline. In an in vitro model of Parkinson's disease, trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin had a similar protective ability as free non-Fe hemin. A positive effect on neuron survival in several in vivo models of Parkinson's disease was associated with the use of biomaterial constructs such as trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin, carbon nanotubes with olfactory bulb stem cells, poly(lactic-co-glycolic acid) microspheres with attached DI-MIAMI cells, ventral midbrain neurons mixed with short fibers of poly-(L-lactic acid) scaffolds and reacted with xyloglucan with/without glial-derived neurotrophic factor, ventral midbrain neurons mixed with Fmoc-DIKVAV hydrogel with/without glial-derived neurotrophic factor. Further studies with in vivo models of Alzheimer's disease and Parkinson's disease are warranted especially using transplantation of cells in agarose micro-columns with an inner lumen filled with an appropriate extracellular matrix material.

8.
Neural Regen Res ; 17(4): 728-740, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472458

RESUMO

A review of recent animal models of amyotrophic lateral sclerosis showed a large number of miRNAs had altered levels of expression in the brain and spinal cord, motor neurons of spinal cord and brainstem, and hypoglossal, facial, and red motor nuclei and were mostly upregulated. Among the miRNAs found to be upregulated in two of the studies were miR-21, miR-155, miR-125b, miR-146a, miR-124, miR-9, and miR-19b, while those downregulated in two of the studies included miR-146a, miR-29, miR-9, and miR-125b. A change of direction in miRNA expression occurred in some tissues when compared (e.g., miR-29b-3p in cerebellum and spinal cord of wobbler mice at 40 days), or at different disease stages (e.g., miR-200a in spinal cord of SOD1(G93A) mice at 95 days vs. 108 and 112 days). In the animal models, suppression of miR-129-5p resulted in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and tended to improve motor neuron survival in the SOD1(G93A) mouse model. Suppression of miR-155 was also associated with increased lifespan, while lowering of miR-29a tended to improve lifespan in males and increase muscle strength in SOD1(G93A) mice. Overexpression of members of miR-17~92 cluster improved motor neuron survival in SOD1(G93A) mice. Treatment with an artificial miRNA designed to target hSOD1 increased lifespan and improved muscle strength in SOD1(G93A) animals. Further studies with animal models of amyotrophic lateral sclerosis are warranted to validate these findings and identify specific miRNAs whose suppression or directed against hSOD1 results in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and improved motor neuron survival in SOD1(G93A) animals.

9.
Neural Regen Res ; 17(7): 1412-1422, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916411

RESUMO

Frontotemporal lobar degeneration describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes. Frontotemporal lobar degeneration is considered to be equivalent to frontotemporal dementia. Frontotemporal dementia is characterized by progressive impairments in behavior, executive function, and language. There are two main clinical subtypes: behavioral-variant frontotemporal dementia and primary progressive aphasia. The early diagnosis of frontotemporal dementia is critical for developing management strategies and interventions for these patients. Without validated biomarkers, the clinical diagnosis depends on recognizing all the core or necessary neuropsychiatric features, but misdiagnosis often occurs due to overlap with a range of neurologic and psychiatric disorders. In the studies reviewed a very large number of microRNAs were found to be dysregulated but with limited overlap between individual studies. Measurement of specific miRNAs singly or in combination, or as miRNA pairs (as a ratio) in blood plasma, serum, or cerebrospinal fluid enabled frontotemporal dementia to be discriminated from healthy controls, Alzheimer's disease, and amyotrophic lateral sclerosis. Furthermore, upregulation of miR-223-3p and downregulation of miR-15a-5p, which occurred both in blood serum and cerebrospinal fluid, distinguished behavioral-variant frontotemporal dementia from healthy controls. Downregulation of miR-132-3p in frontal and temporal cortical tissue distinguished frontotemporal lobar degeneration and frontotemporal dementia, respectively, from healthy controls. Possible strong miRNA biofluid biomarker contenders for behavioral-variant frontotemporal dementia are miR-223-3p, miR-15a-5p, miR-22-3p in blood serum and cerebrospinal fluid, and miR-124 in cerebrospinal fluid. No miRNAs were identified able to distinguish between behavioral-variant frontotemporal dementia and primary progressive aphasia subtypes. Further studies are warranted on investigating miRNA expression in biofluids and frontal/temporal cortical tissue to validate and extend these findings.

10.
Neural Regen Res ; 16(11): 2159-2169, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818488

RESUMO

A review of recent animal models of Huntington's disease showed many microRNAs had altered expression levels in the striatum and cerebral cortex, and which were mostly downregulated. Among the altered microRNAs were miR-9/9*, miR-29b, miR-124a, miR-132, miR-128, miR-139, miR-122, miR-138, miR-23b, miR-135b, miR-181 (all downregulated) and miR-448 (upregulated), and similar changes had been previously found in Huntington's disease patients. In the animal cell studies, the altered microRNAs included miR-9, miR-9*, miR-135b, miR-222 (all downregulated) and miR-214 (upregulated). In the animal models, overexpression of miR-155 and miR-196a caused a decrease in mutant huntingtin mRNA and protein level, lowered the mutant huntingtin aggregates in striatum and cortex, and improved performance in behavioral tests. Improved performance in behavioral tests also occurred with overexpression of miR-132 and miR-124. In the animal cell models, overexpression of miR-22 increased the viability of rat primary cortical and striatal neurons infected with mutant huntingtin and decreased huntingtin -enriched foci of ≥ 2 µm. Also, overexpression of miR-22 enhanced the survival of rat primary striatal neurons treated with 3-nitropropionic acid. Exogenous expression of miR-214, miR-146a, miR-150, and miR-125b decreased endogenous expression of huntingtin mRNA and protein in HdhQ111/HdhQ111 cells. Further studies with animal models of Huntington's disease are warranted to validate these findings and identify specific microRNAs whose overexpression inhibits the production of mutant huntingtin protein and other harmful processes and may provide a more effective means of treating Huntington's disease in patients and slowing its progression.

11.
Neural Regen Res ; 16(3): 440-447, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32985463

RESUMO

A main cause of vision loss in the elderly is age-related macular degeneration (AMD). Among the cellular, biochemical, and molecular changes linked to this disease, inflammation and angiogenesis appear as being crucial in AMD pathogenesis and progression. There are two forms of the disease: dry AMD, accounting for 80-90% of cases, and wet AMD. The disease usually begins as dry AMD associated with retinal pigment epithelium and photoreceptor degeneration, whereas wet AMD is associated with choroidal neovascularization resulting in severe vision impairment. The new vessels are largely malformed, leading to blood and fluid leakage within the disrupted tissue, which provokes inflammation and scar formation and results in retinal damage and detachment. MicroRNAs are dysregulated in AMD and may facilitate the early detection of the disease and monitoring disease progression. Two recent reviews of microRNAs in AMD had indicated weaknesses or limitations in four earlier investigations. Studies in the last three years have shown considerable progress in overcoming some of these concerns and identifying specific microRNAs as biomarkers for AMD. Further large-scale studies are warranted using appropriate statistical methods to take into account gender and age disparity in the study populations and confounding factors such as smoking status.

12.
Neural Regen Res ; 16(4): 621-627, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063711

RESUMO

Choroidal neovascularization characterizes wet age-related macular degeneration. Choroidal neovascularization formation involves a primarily angiogenic process that is combined with both inflammation and proteolysis. A primary cause of choroidal neovascularization pathogenesis is alterations in pro- and anti-angiogenic factors derived from the retinal pigment epithelium, with vascular endothelium growth factor being mainly responsible for both clinical and experimental choroidal neovascularization. MicroRNAs (miRNAs) which are short, non-coding, endogenous RNA molecules have a major role in regulating various pathological processes, including inflammation and angiogenesis. A review of recent studies with the mouse laser-induced choroidal neovascularization model has shown alterations in miRNA expression in choroidal neovascularization tissues and could be potential therapeutic targets for wet age-related macular degeneration. Upregulation of miR-505 (days 1 and 3 post-laser), miR-155 (day 14) occurred in retina; miR-342-5p (days 3 and 7), miR-126-3p (day 14) in choroid; miR-23a, miR-24, miR-27a (day 7) in retina/choroid; miR-505 (days 1 and 3) in retinal pigment epithelium/choroid; downregulation of miR-155 (days 1 and 3), miR-29a, miR-29b, miR-29c (day 5), miR-93 (day 14), miR-126 (day 14) occurred in retinal pigment epithelium/choroid. Therapies using miRNA mimics or inhibitors were found to decrease choroidal neovascularization lesions. Choroidal neovascularization development was reduced by overexpression of miR-155, miR-188-5p, miR-(5,B,7), miR-126-3p, miR-342-5p, miR-93, miR-126, miR-195a-3p, miR-24, miR-21, miR-31, miR-150, and miR-184, or suppression of miR-505, miR-126-3p, miR-155, and miR-23/27. Further studies are warranted to determine miRNA expression in mouse laser-induced choroidal neovascularization models in order to validate and extend the reported findings. Important experimental variables need to be standardized; these include the strain and age of animals, gender, number and position of laser burns to the eye, laser parameters to induce choroidal neovascularization lesions including wavelength, power, spot size, and duration.

13.
Neural Regen Res ; 15(10): 1831-1837, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32246624

RESUMO

Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain, spinal cord and optic nerve leading to demyelination. Focal demyelination is associated with relapsing-remitting multiple sclerosis, while progressive forms of the disease show axonal degeneration and neuronal loss. The tests currently used in the clinical diagnosis and management of multiple sclerosis have limitations due to specificity and sensitivity. MicroRNAs (miRNAs) are dysregulated in many diseases and disorders including demyelinating and neuroinflammatory diseases. A review of recent studies with the experimental autoimmune encephalomyelitis animal model (mostly female mice 6-12 weeks of age) has confirmed miRNAs as biomarkers of experimental autoimmune encephalomyelitis disease and importantly at the pre-onset (asymptomatic) stage when assessed in blood plasma and urine exosomes, and spinal cord tissue. The expression of certain miRNAs was also dysregulated at the onset and peak of disease in blood plasma and urine exosomes, brain and spinal cord tissue, and at the post-peak (chronic) stage of experimental autoimmune encephalomyelitis disease in spinal cord tissue. Therapies using miRNA mimics or inhibitors were found to delay the induction and alleviate the severity of experimental autoimmune encephalomyelitis disease. Interestingly, experimental autoimmune encephalomyelitis disease severity was reduced by overexpression of miR-146a, miR-23b, miR-497, miR-26a, and miR-20b, or by suppression of miR-182, miR-181c, miR-223, miR-155, and miR-873. Further studies are warranted on determining more fully miRNA profiles in blood plasma and urine exosomes of experimental autoimmune encephalomyelitis animals since they could serve as biomarkers of asymptomatic multiple sclerosis and disease course. Additionally, studies should be performed with male mice of a similar age, and with aged male and female mice.

14.
Neural Regen Res ; 15(7): 1220-1234, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31960801

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The disability caused by inflammatory demyelination clinically dominates the early stages of relapsing-remitting MS and is reversible. Once there is considerable loss of axons, MS patients enter a secondary progressive stage. Disease-modifying drugs currently in use for MS suppress the immune system and reduce relapse rates but are not effective in the progressive stage. Various animal models of MS (mostly mouse and rat) have been established and proved useful in studying the disease process and response to therapy. The experimental autoimmune encephalomyelitis animal studies reviewed here showed that a chronic progressive disease can be induced by immunization with appropriate amounts of myelin oligodendrocyte glycoprotein together with mycobacterium tuberculosis and pertussis toxin in Freund's adjuvant. The clinical manifestations of autoimmune encephalomyelitis disease were prevented or reduced by treatment with certain pharmacological agents given prior to, at, or after peak disease, and the agents had protective effects as shown by inhibiting demyelination and damage to neurons, axons and oligodendrocytes. In the cuprizone-induced toxicity animal studies, the pharmacological agents tested were able to promote remyelination and increase the number of oligodendrocytes when administered therapeutically or prophylactically. A monoclonal IgM antibody protected axons in the spinal cord and preserved motor function in animals inoculated with Theiler's murine encephalomyelitis virus. In all these studies the pharmacological agents were administered singly. A combination therapy may be more effective, especially using agents that target neuroinflammation and neurodegeneration, as they may exert synergistic actions.

15.
Neural Regen Res ; 15(4): 606-619, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638082

RESUMO

Multiple sclerosis is a chronic autoimmune disease of the central nervous system. It is the main cause of non-traumatic neurological disability in young adults. Multiple sclerosis mostly affects people aged 20-50 years; however, it can occur in young children and much older adults. Factors identified in the distribution of MS include age, gender, genetics, environment, and ethnic background. Multiple sclerosis is usually associated with progressive degrees of disability. The disease involves demyelination of axons of the central nervous system and causes brain and spinal cord neuronal loss and atrophy. Diagnosing multiple sclerosis is based on a patient's medical history including symptoms, physical examination, and various tests such as magnetic resonance imaging, cerebrospinal fluid and blood tests, and electrophysiology. The disease course of multiple sclerosis is not well correlated with the biomarkers presently used in clinical practice. Blood-derived biomarkers that can detect and distinguish the different phenotypes in multiple sclerosis may be advantageous in personalized treatment with disease-modifying drugs and to predict response to treatment. The studies reviewed have shown that the expression levels of a large number of miRNAs in peripheral blood, serum, exosomes isolated from serum, and cerebrospinal fluid are altered in multiple sclerosis and can distinguish the disease phenotypes from each other. Further studies are warranted to independently validate these findings so that individual or pairs of miRNAs in serum or cerebrospinal fluid can be used as potential diagnostic markers for adult and pediatric multiple sclerosis and for monitoring disease progression and response to therapy.

16.
Neural Regen Res ; 14(11): 1858-1869, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290435

RESUMO

Diabetes mellitus, together with its complications, has been increasing in prevalence worldwide. Its complications include cardiovascular disease (e.g., myocardial infarction, stroke), neuropathy, nephropathy, and eye complications (e.g., glaucoma, cataracts, retinopathy, and macular edema). In patients with either type 1 or type 2 diabetes mellitus, diabetic retinopathy is the leading cause of visual impairment or blindness. It is characterized by progressive changes in the retinal microvasculature. The progression from nonproliferative diabetic retinopathy to a more advanced stage of moderate to severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy occurs very quickly after diagnosis of mild nonproliferative diabetic retinopathy. The etiology of diabetic retinopathy is unclear, and present treatments have limited effectiveness. Currently diabetic retinopathy can only be diagnosed by a trained specialist, which reduces the population that can be examined. A screening biomarker of diabetic retinopathy with high sensitivity and specificity would aid considerably in identifying those individuals in need of clinical assessment and treatment. The majority of the studies reviewed identified specific microRNAs in blood serum/plasma able to distinguish diabetic patients with retinopathy from those without retinopathy and for the progresion of the disease from nonproliferative diabetic retinopathy to proliferative diabetic retinopathy. In addition, certain microRNAs in vitreous humor were dysregulated in proliferative diabetic retinopathy compared to controls. A very high percentage of patients with diabetic retinopathy develop Alzheimer's disease. Thus, identifying diabetic retinopathy by measurement of suitable biomarkers would also enable better screening and treatment of those individuals at risk of Alzheimer's disease.

17.
Neural Regen Res ; 14(7): 1158-1176, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804241

RESUMO

The most common age-related neurodegenerative disease is Alzheimer's disease (AD) characterized by aggregated amyloid-ß (Aß) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles, together with loss of cholinergic neurons, synaptic alterations, and chronic inflammation within the brain. These lead to progressive impairment of cognitive function. There is evidence of innate immune activation in AD with microgliosis. Classically-activated microglia (M1 state) secrete inflammatory and neurotoxic mediators, and peripheral immune cells are recruited to inflammation sites in the brain. The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects. Translation of active and passive immunotherapy targeting Aß in AD animal model trials had limited success in clinical trials. Treatment with immunomodulatory/anti-inflammatory agents early in the disease process, while not preventive, is able to inhibit the inflammatory consequences of both Aß and tau aggregation. The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD. The majority of the animal studies reviewed had used transgenic models of early-onset AD. More effort needs to be given to creat models of late-onset AD. The effects of a combinational therapy involving two or more of the tested pharmaceutical agents, or one of these agents given in conjunction with one of the cell-based therapies, in an aged animal model of AD would warrant investigation.

18.
Neural Regen Res ; 14(2): 242-255, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30531004

RESUMO

Alzheimer's disease (AD) is the most common age-related, progressive neurodegenerative disease. It is characterized by memory loss and cognitive decline and responsible for most cases of dementia in the elderly. Late-onset or sporadic AD accounts for > 95% of cases, with age at onset > 65 years. Currently there are no drugs or other therapeutic agents available to prevent or delay the progression of AD. The cellular and molecular changes occurring in the brains of individuals with AD include accumulation of ß-amyloid peptide and hyperphosphorylated tau protein, decrease of acetylcholine neurotransmitter, inflammation, and oxidative stress. Aggregation of ß-amyloid peptide in extracellular plaques and the hyperphosphorylated tau protein in intracellular neurofibrillary tangles are characteristic of AD. A major challenge is identifying molecular biomarkers of the early-stage AD in patients as most studies have been performed with blood or brain tissue samples (postmortem) at late-stage AD. Subjects with mild cognitive impairment almost always have the neuropathologic features of AD with about 50% of mild cognitive impairment patients progressing to AD. They could provide important information about AD pathomechanism and potentially also highlight minimally or noninvasive, easy-to-access biomarkers. MicroRNAs are dysregulated in AD, and may facilitate the early detection of the disease and potentially the continual monitoring of disease progression and allow therapeutic interventions to be evaluated. Four recent reviews have been published of microRNAs in AD, each of which identified areas of weakness or limitations in the reported studies. Importantly, studies in the last three years have shown considerable progress in overcoming some of these limitations and identifying specific microRNAs as biomarkers for AD and mild cognitive impairment. Further large-scale human studies are warranted with less disparity in the study populations, and using an appropriate method to validate the findings.

19.
Neural Regen Res ; 13(9): 1493-1506, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30127102

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disease for which the characteristic motor symptoms emerge after an extensive loss of dopamine containing neurons. The cell bodies of these neurons are present in the substantia nigra, with the nerve terminals being in the striatum. Both innate and adaptive immune responses may contribute to dopaminergic neurodegeneration and disease progression is potentially linked to these. Studies in the last twenty years have indicated an important role for neuroinflammation in PD through degeneration of the nigrostriatal dopaminergic pathway. Characteristic of neuroinflammation is the activation of brain glial cells, principally microglia and astrocytes that release various soluble factors. Many of these factors are proinflammatory and neurotoxic and harmful to nigral dopaminergic neurons. Recent studies have identified several different agents with immunomodulatory properties that protected dopaminergic neurons from degeneration and death in animal models of PD. All of the agents were effective in reducing the motor deficit and alleviating dopaminergic neurotoxicity and, when measured, preventing the decrease of dopamine upon being administered therapeutically after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 6-hydroxydopamine, rotenone-lesioning or delivery of adeno-associated virus-α-synuclein to the ventral midbrain of animals. Some of these agents were shown to exert an anti-inflammatory action, decrease oxidative stress, and reduce lipid peroxidation products. Activation of microglia and astrocytes was also decreased, as well as infiltration of T cells into the substantia nigra. Pretreatment with fingolimod, tanshinoine I, dimethyl fumarate, thalidomide, or cocaine- and amphetamine-regulated transcript peptide as a preventive strategy ameliorated motor deficits and nigral dopaminergic neurotoxicity in brain-lesioned animals. Immunomodulatory agents could be used to treat patients with early clinical signs of the disease or potentially even prior to disease onset in those identified as having pre-disposing risk, including genetic factors.

20.
Neural Regen Res ; 12(11): 1749-1761, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29239310

RESUMO

Traumatic brain injury (TBI) is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499) and cerebro-spinal fluid (CSF) (miR-328, -362-3p, -451, -486a) as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b). MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21) have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...