Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 125(3): e2019JE006296, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32714727

RESUMO

Some years ago, the consensus was that asteroid (16) Psyche was almost entirely metal. New data on density, radar properties, and spectral signatures indicate that the asteroid is something perhaps even more enigmatic: a mixed metal and silicate world. Here we combine observations of Psyche with data from meteorites and models for planetesimal formation to produce the best current hypotheses for Psyche's properties and provenance. Psyche's bulk density appears to be between 3,400 and 4,100 kg m-3. Psyche is thus predicted to have between ~30 and ~60 vol% metal, with the remainder likely low-iron silicate rock and not more than ~20% porosity. Though their density is similar, mesosiderites are an unlikely analog to bulk Psyche because mesosiderites have far more iron-rich silicates than Psyche appears to have. CB chondrites match both Psyche's density and spectral properties, as can some pallasites, although typical pallasitic olivine contains too much iron to be consistent with the reflectance spectra. Final answers, as well as resolution of contradictions in the data set of Psyche physical properties, for example, the thermal inertia measurements, may not be resolved until the NASA Psyche mission arrives in orbit at the asteroid. Despite the range of compositions and formation processes for Psyche allowed by the current data, the science payload of the Psyche mission (magnetometers, multispectral imagers, neutron spectrometer, and a gamma-ray spectrometer) will produce data sets that distinguish among the models.

2.
Phys Rev Lett ; 97(19): 192701, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17155619

RESUMO

The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

4.
Phys Rev Lett ; 70(8): 1093-1096, 1993 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-10054284
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...