Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 296: 133987, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176296

RESUMO

Two thermophilic trickle bed reactors (TBRs) were packed with different packing densities with polyurethane foam (PUF) and their performance under different retention times were evaluated during ex-situ biogas upgrading process. The results showed that the TBR more tightly packed i.e. containing more layers of PUF achieved higher H2 utilization efficiency (>99%) and thus, higher methane content (>95%) in the output gas. The tightly packed micro-porous PUF enhanced biofilm immobilization, gas-liquid mass transfer and biomethanation efficiency. Moreover, applying a continuous high-rate nutrient trickling could lead to liquid overflow resulting in formation of non-homogenous biofilm and severe deduction of biomethanation efficiency. High-throughput 16S rRNA gene sequencing revealed that the liquid media were predominated by hydrogenotrophic methanogens. Moreover, members of Peptococcaceae family and uncultured members of Clostridia class were identified as the most abundant species in the biofilm. The proliferation of hydrogenotrophic methanogens together with syntrophic bacteria showed that H2 addition resulted in altering the microbial community in biogas upgrading process.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Hidrogênio , Metano , Porosidade , RNA Ribossômico 16S/genética
2.
Bioresour Technol ; 348: 126754, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35077815

RESUMO

In this study, the effects of bioaugmentation of typically dominant hydrogenotrophic methanogens to CSTR co-digesting cheese whey and manure, under in-situ biomethanation operations were investigated. Reactors working at mesophilic (37 °C) and thermophilic (55 °C) conditions were independently treated and examined in terms of microbial composition and process dynamics. Addition of Methanoculleus bourgensis in the mesophilic reactor led to a stable biomethanation, and an improved microbial metabolism, resulting in 11% increase in CH4 production rate. 16S rRNA and biochemical analyses revealed an enrichment in syntrophic and acidogenic species abundance. Moreover, nearly total volatile fatty acids conversion was observed. Differently, Methanothermobacter thermautotrophicus addition in the thermophilic reactor did not promote biogas upgrading performance due to incomplete H2 conversion and inefficient community adaptation to H2 excess, ultimately favoring acetoclastic methanogenesis. Bioaugmentation constitutes a viable tool to strengthen in-situ upgrading processes and paves the way to the development of more sophisticated and robust microbial inoculants.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Reatores Biológicos , Digestão , RNA Ribossômico 16S/genética
3.
Bioresour Technol ; 340: 125694, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34352646

RESUMO

Four different types of ceramic gas distributors (Al2O3 of 1.2 µm and SiC of 0.5, 7 and 14 µm) were evaluated to increase biomethane formation during ex-situ biogas upgrading process. Each type of gas diffuser was tested independently at three different gas retention times of 10, 5 and 2.5 h, at thermophilic conditions. CH4 production rate increased by increasing input gas flow rate for all type of distributors, whereas CH4 concentration declined. Reactors equipped with SiC gas distributors effectively improved biomethane content fulfilling natural gas standards. Microbial analysis showed high abundance of hydrogenotrophic methanogens and proliferated syntrophic bacteria, i.e. syntrophic acetate oxidizers and homoacetogens, confirming the effect of H2 to alternate anaerobic digestion microbiome and enhance hydrogenotrophic methanogenesis. A detailed anaerobic bioconversion model was adapted to simulate the operation of the R1-R4 reactors. The model was shown to be effective for the simulation of biogas upgrading process in up-flow reactors.


Assuntos
Biocombustíveis , Euryarchaeota , Reatores Biológicos , Hidrogênio , Metano
4.
Bioresour Technol ; 275: 375-385, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30599281

RESUMO

This study investigates the efficiency in methane production of lab-scale mesophilic (37 °C) and thermophilic (54 °C) continuous stirred tank reactors fed with cheese whey at different operational conditions. Results showed that whey mono-digestion was feasible at mesophilic conditions, while at thermophilic conditions frequent acidification incidents were recorded. The limited buffer capacity of the influent feedstock was responsible for the unstable anaerobic digestion process. The co-digestion of cheese whey with cattle manure maintained the pH levels higher than 7.0, and therefore, stable methane production rates were achieved without any significant accumulation of volatile fatty acids. An additional enhancement of the methane productivity was achieved by in-situ H2 dispersion. Microbial community composition was investigated using high-throughput 16S rRNA gene amplicon sequencing and results were correlated with process parameters. Hydrogenotrophic methanogens were the dominant archaea during the whole experiment at mesophilic and thermophilic conditions.


Assuntos
Queijo , Soro do Leite/metabolismo , Anaerobiose , Reatores Biológicos , Queijo/microbiologia , Euryarchaeota/genética , Ácidos Graxos Voláteis/biossíntese , Esterco , RNA Ribossômico 16S/genética
5.
Bioresour Technol ; 245(Pt A): 332-341, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28898828

RESUMO

Biogas upgrading processes by in-situ hydrogen (H2) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H2 injection into the liquid phase of a fermenter with the aim of modeling and simulating these processes. This was done by including hydrogenotrophic methanogen kinetics for H2 consumption and inhibition effect on the acetogenic steps. Special attention was paid to gas to liquid transfer of H2. The final model was successfully validated considering a set of Case Studies. Biogas composition and H2 utilization were correctly predicted, with overall deviation below 10% compared to experimental measurements. Parameter sensitivity analysis revealed that the model is highly sensitive to the H2 injection rate and mass transfer coefficient. The model developed is an effective tool for predicting process performance in scenarios with biogas upgrading.


Assuntos
Biocombustíveis , Reatores Biológicos , Euryarchaeota , Hidrogênio , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...