Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Genet ; 15: 1240462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495670

RESUMO

Background: Socioeconomic Status (SES) is a potent environmental determinant of health. To our knowledge, no assessment of genotype-environment interaction has been conducted to consider the joint effects of socioeconomic status and genetics on risk for metabolic disease. We analyzed data from the Mexican American Family Studies (MAFS) to evaluate the hypothesis that genotype-by-environment interaction (GxE) is an essential determinant of variation in risk factors for metabolic syndrome (MS). Methods: We employed a maximum likelihood estimation of the decomposition of variance components to detect GxE interaction. After excluding individuals with diabetes and individuals on medication for diabetes, hypertension, or dyslipidemia, we analyzed 12 MS risk factors: fasting glucose (FG), fasting insulin (FI), 2-h glucose (2G), 2-h insulin (2I), body mass index (BMI), waist circumference (WC), leptin (LP), high-density lipoprotein-cholesterol (HDL-C), triglycerides (TG), total serum cholesterol (TSC), systolic blood pressure (SBP), and diastolic blood pressure (DBP). Our SES variable used a combined score of Duncan's socioeconomic index and education years. Heterogeneity in the additive genetic variance across the SES continuum and a departure from unity in the genetic correlation coefficient were taken as evidence of GxE interaction. Hypothesis tests were conducted using standard likelihood ratio tests. Results: We found evidence of GxE for fasting glucose, 2-h glucose, 2-h insulin, BMI, and triglycerides. The genetic effects underlying the insulin/glucose metabolism component of MS are upregulated at the lower end of the SES spectrum. We also determined that the household variance for systolic blood pressure decreased with increasing SES. Conclusion: These results show a significant change in the GxE interaction underlying the major components of MS in response to changes in socioeconomic status. Further mRNA sequencing studies will identify genes and canonical gene pathways to support our molecular-level hypotheses.

2.
Heliyon ; 10(5): e26641, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444512

RESUMO

Additive Manufacturing (AM) has recently demonstrated significant medical progress. Due to advancements in materials and methodologies, various processes have been developed to cater to the medical sector's requirements, including bioprinting and 4D, 5D, and 6D printing. However, only a few studies have captured these emerging trends and their medical applications. Therefore, this overview presents an analysis of the advancements and achievements obtained in AM for the medical industry, focusing on the principal trends identified in the annual report of AM3DP.

3.
Front Genet ; 14: 1132110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795246

RESUMO

Background: Socioeconomic status (SES) is a potent environmental determinant of health. To our knowledge, no assessment of genotype-environment interaction has been conducted to consider the joint effects of socioeconomic status and genetics on risk for cardiovascular disease (CVD). We analyzed Mexican American Family Studies (MAFS) data to evaluate the hypothesis that genotype-by-environment interaction (GxE) is an important determinant of variation in CVD risk factors. Methods: We employed a linear mixed model to investigate GxE in Mexican American extended families. We studied two proxies for CVD [Pooled Cohort Equation Risk Scores/Framingham Risk Scores (FRS/PCRS) and carotid artery intima-media thickness (CA-IMT)] in relation to socioeconomic status as determined by Duncan's Socioeconomic Index (SEI), years of education, and household income. Results: We calculated heritability for FRS/PCRS and carotid artery intima-media thickness. There was evidence of GxE due to additive genetic variance heterogeneity and genetic correlation for FRS, PCRS, and CA-IMT measures for education (environment) but not for household income or SEI. Conclusion: The genetic effects underlying CVD are dynamically modulated at the lower end of the SES spectrum. There is a significant change in the genetic architecture underlying the major components of CVD in response to changes in education.

4.
Mol Psychiatry ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882501

RESUMO

Genome-wide association studies (GWAS) of mood disorders in large case-control cohorts have identified numerous risk loci, yet pathophysiological mechanisms remain elusive, primarily due to the very small effects of common variants. We sought to discover risk variants with larger effects by conducting a genome-wide association study of mood disorders in a founder population, the Old Order Amish (OOA, n = 1,672). Our analysis revealed four genome-wide significant risk loci, all of which were associated with >2-fold relative risk. Quantitative behavioral and neurocognitive assessments (n = 314) revealed effects of risk variants on sub-clinical depressive symptoms and information processing speed. Network analysis suggested that OOA-specific risk loci harbor novel risk-associated genes that interact with known neuropsychiatry-associated genes via gene interaction networks. Annotation of the variants at these risk loci revealed population-enriched, non-synonymous variants in two genes encoding neurodevelopmental transcription factors, CUX1 and CNOT1. Our findings provide insight into the genetic architecture of mood disorders and a substrate for mechanistic and clinical studies.

5.
Front Neurol ; 14: 1071766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970519

RESUMO

Introduction: The cocktail-party problem refers to the difficulty listeners face when trying to attend to relevant sounds that are mixed with irrelevant ones. Previous studies have shown that solving these problems relies on perceptual as well as cognitive processes. Previously, we showed that speech-reception thresholds (SRTs) on a cocktail-party listening task were influenced by genetic factors. Here, we estimated the degree to which these genetic factors overlapped with those influencing cognitive abilities. Methods: We measured SRTs and hearing thresholds (HTs) in 493 listeners, who ranged in age from 18 to 91 years old. The same individuals completed a cognitive test battery comprising 18 measures of various cognitive domains. Individuals belonged to large extended pedigrees, which allowed us to use variance component models to estimate the narrow-sense heritability of each trait, followed by phenotypic and genetic correlations between pairs of traits. Results: All traits were heritable. The phenotypic and genetic correlations between SRTs and HTs were modest, and only the phenotypic correlation was significant. By contrast, all genetic SRT-cognition correlations were strong and significantly different from 0. For some of these genetic correlations, the hypothesis of complete pleiotropy could not be rejected. Discussion: Overall, the results suggest that there was substantial genetic overlap between SRTs and a wide range of cognitive abilities, including abilities without a major auditory or verbal component. The findings highlight the important, yet sometimes overlooked, contribution of higher-order processes to solving the cocktail-party problem, raising an important caveat for future studies aiming to identify specific genetic factors that influence cocktail-party listening.

6.
iScience ; 25(9): 104997, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111257

RESUMO

Communicating in everyday situations requires solving the cocktail-party problem, or segregating the acoustic mixture into its constituent sounds and attending to those of most interest. Humans show dramatic variation in this ability, leading some to experience real-world problems irrespective of whether they meet criteria for clinical hearing loss. Here, we estimated the genetic contribution to cocktail-party listening by measuring speech-reception thresholds (SRTs) in 425 people from large families and ranging in age from 18 to 91 years. Roughly half the variance of SRTs was explained by genes (h 2 = 0.567). The genetic correlation between SRTs and hearing thresholds (HTs) was medium (ρ G = 0.392), suggesting that the genetic factors influencing cocktail-party listening were partially distinct from those influencing sound sensitivity. Aging and socioeconomic status also strongly influenced SRTs. These findings may represent a first step toward identifying genes for "hidden hearing loss," or hearing problems in people with normal HTs.

7.
Commun Biol ; 5(1): 756, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902682

RESUMO

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.


Assuntos
Diabetes Mellitus Tipo 2 , Jejum , Diabetes Mellitus Tipo 2/genética , Glucose , Humanos , Insulina/genética , National Heart, Lung, and Blood Institute (U.S.) , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Receptores Imunológicos/genética , Estados Unidos
8.
Hypertension ; 79(8): 1656-1667, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652341

RESUMO

BACKGROUND: The availability of whole-genome sequencing data in large studies has enabled the assessment of coding and noncoding variants across the allele frequency spectrum for their associations with blood pressure. METHODS: We conducted a multiancestry whole-genome sequencing analysis of blood pressure among 51 456 Trans-Omics for Precision Medicine and Centers for Common Disease Genomics program participants (stage-1). Stage-2 analyses leveraged array data from UK Biobank (N=383 145), Million Veteran Program (N=318 891), and Reasons for Geographic and Racial Differences in Stroke (N=10 643) participants, along with whole-exome sequencing data from UK Biobank (N=199 631) participants. RESULTS: Two blood pressure signals achieved genome-wide significance in meta-analyses of stage-1 and stage-2 single variant findings (P<5×10-8). Among them, a rare intergenic variant at novel locus, LOC100506274, was associated with lower systolic blood pressure in stage-1 (beta [SE]=-32.6 [6.0]; P=4.99×10-8) but not stage-2 analysis (P=0.11). Furthermore, a novel common variant at the known INSR locus was suggestively associated with diastolic blood pressure in stage-1 (beta [SE]=-0.36 [0.07]; P=4.18×10-7) and attained genome-wide significance in stage-2 (beta [SE]=-0.29 [0.03]; P=7.28×10-23). Nineteen additional signals suggestively associated with blood pressure in meta-analysis of single and aggregate rare variant findings (P<1×10-6 and P<1×10-4, respectively). DISCUSSION: We report one promising but unconfirmed rare variant for blood pressure and, more importantly, contribute insights for future blood pressure sequencing studies. Our findings suggest promise of aggregate analyses to complement single variant analysis strategies and the need for larger, diverse samples, and family studies to enable robust rare variant identification.


Assuntos
Hipertensão , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Genômica , Humanos , Hipertensão/genética , Polimorfismo de Nucleotídeo Único , Medicina de Precisão
9.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385311

RESUMO

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

10.
Biol Psychiatry ; 90(6): 373-384, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33975707

RESUMO

BACKGROUND: Cognitive impairment is a key feature of psychiatric illness, making cognition an important tool for exploring of the genetics of illness risk. It remains unclear which measures should be prioritized in pleiotropy-guided research. Here, we generate profiles of genetic overlap between psychotic and affective disorders and cognitive measures in Caucasian and Hispanic groups. METHODS: Data were from 4 samples of extended pedigrees (N = 3046). Coefficient of relationship analyses were used to estimate genetic overlap between illness risk and cognitive ability. Results were meta-analyzed. RESULTS: Psychosis was characterized by cognitive impairments on all measures with a generalized profile of genetic overlap. General cognitive ability shared greatest genetic overlap with psychosis risk (average endophenotype ranking value [ERV] across samples from a random-effects meta-analysis = 0.32), followed by verbal memory (ERV = 0.24), executive function (ERV = 0.22), and working memory (ERV = 0.21). For bipolar disorder, there was genetic overlap with processing speed (ERV = 0.05) and verbal memory (ERV = 0.11), but these were confined to select samples. Major depressive disorder was characterized by enhanced working and face memory performance, as reflected in significant genetic overlap in 2 samples. CONCLUSIONS: There is substantial genetic overlap between risk for psychosis and a range of cognitive abilities (including general intelligence). Most of these effects are largely stable across of ascertainment strategy and ethnicity. Genetic overlap between affective disorders and cognition, on the other hand, tends to be specific to ascertainment strategy, ethnicity, and cognitive test battery.


Assuntos
Transtorno Depressivo Maior , Transtornos Mentais , Transtornos Psicóticos , Cognição , Humanos , Memória de Curto Prazo , Testes Neuropsicológicos , Linhagem , Transtornos Psicóticos/genética
11.
Nat Commun ; 12(1): 2182, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846329

RESUMO

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10-72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10-4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10-5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.


Assuntos
Fatores de Risco Cardiometabólico , Cromossomos Humanos X/genética , Lipídeos/sangue , Proteínas do Olho/metabolismo , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Loci Gênicos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Fenômica , Polimorfismo de Nucleotídeo Único/genética , Tela Subcutânea/metabolismo , Sequenciamento Completo do Genoma
12.
Circ Genom Precis Med ; 14(3): e003232, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887960

RESUMO

BACKGROUND: The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS: We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS: In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (ß=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS: Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Aterosclerose , Mutação com Perda de Função , Americanos Mexicanos , Fosfatidilinositóis , Adulto , Proteína 3 Semelhante a Angiopoietina/sangue , Proteína 3 Semelhante a Angiopoietina/genética , Aterosclerose/sangue , Aterosclerose/genética , Feminino , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade , Fosfatidilinositóis/sangue , Fosfatidilinositóis/genética
14.
Front Immunol ; 12: 630988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717164

RESUMO

Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.


Assuntos
Perfilação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Transcriptoma , Infecções Tumorais por Vírus/veterinária , Tartarugas/virologia , Fatores Etários , Animais , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Texas/epidemiologia , Infecções Tumorais por Vírus/virologia
15.
Nature ; 586(7831): 763-768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057201

RESUMO

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Assuntos
Hematopoiese Clonal/genética , Predisposição Genética para Doença , Genoma Humano/genética , Sequenciamento Completo do Genoma , Adulto , África/etnologia , Idoso , Idoso de 80 Anos ou mais , População Negra/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Mutação em Linhagem Germinativa/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética , Proteínas com Motivo Tripartido/genética , Estados Unidos , alfa Carioferinas/genética
16.
Nat Genet ; 52(9): 969-983, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32839606

RESUMO

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Genoma/genética , LDL-Colesterol/genética , Simulação por Computador , Estudo de Associação Genômica Ampla/métodos , Humanos , Modelos Genéticos , Anotação de Sequência Molecular/métodos , Fenótipo , Sequenciamento Completo do Genoma/métodos
17.
Eur J Hum Genet ; 28(6): 790-803, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31996801

RESUMO

Phasing is the process of inferring haplotypes from genotype data. Efficient algorithms and associated software for accurate phasing in pedigrees are needed, especially for populations lacking reference panels of sequenced individuals. We present a novel method for phasing genotypes from whole-genome sequence data in pedigrees, called PULSAR (Phasing Using Lineage Specific Alleles/Rare variants). The method is based on the property that alleles specific to a single founding chromosome within a pedigree are highly informative for identifying haplotypes that are shared identical by descent. Simulation studies are used to assess the performance of PULSAR with various pedigree sizes and structures, and the effect of genotyping errors and the presence of nonsequenced individuals is investigated. In pedigrees with complete sequencing and realistic genotyping error rates, PULSAR correctly phases >99.9% of heterozygous genotypes, excluding sites at which all individuals are heterozygous, and does so with a switch error rate frequently below 10-4. PULSAR is highly accurate, capable of genotype error correction and imputation, and computationally competitive with alternative phasing software applicable to pedigrees. Our method has the significant advantage of not requiring reference panels that are essential for other population-based phasing algorithms. A software implementation of PULSAR is freely available.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Genótipo , Técnicas de Genotipagem/métodos , Haplótipos , Linhagem , Sequenciamento Completo do Genoma/métodos , Adulto , Criança , Cromossomos/genética , Feminino , Efeito Fundador , Estudo de Associação Genômica Ampla/normas , Técnicas de Genotipagem/normas , Heterozigoto , Humanos , Masculino , Sensibilidade e Especificidade , Software/normas , Sequenciamento Completo do Genoma/normas
18.
J Thromb Haemost ; 18(1): 201-216, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556206

RESUMO

BACKGROUND: Plasma-derived (pd) or recombinant (r) therapeutic factor VIII proteins (FVIIIs) are infused to arrest/prevent bleeding in patients with hemophilia A (PWHA). However, FVIIIs are neutralized if anti-FVIII-antibodies (inhibitors) develop. Accumulating evidence suggests that pdFVIIIs with von Willebrand factor (VWF) are less immunogenic than rFVIIIs and that distinct rFVIIIs are differentially immunogenic. Since inhibitor development is T-helper-cell-dependent, human leukocyte antigen (HLA)-class-II (HLAcII) molecules constitute an important early determinant. OBJECTIVES: Use dendritic cell (DC)-protein processing/presentation assays with mass-spectrometric and peptide-proteomic analyses to quantify the DP-bound, DQ-bound, and DR-bound FVIII-derived peptides in individual HLAcII repertoires and compare the immunogenic potential of six distinct FVIIIs based on their measured peptide counts. PATIENTS/METHODS: Monocyte-derived DCs from normal donors and/or PWHA were cultured with either: Mix-rFVIII, a VWF-free equimolar mixture of a full-length (FL)-rFVIII [Advate® (Takeda)] and four distinct B-domain-deleted (BDD)-rFVIIIs [Xyntha® (Pfizer), NovoEight® (Novo-Nordisk), Nuwiq® (Octapharma), and Afstyla® (CSL Behring GmBH)]; a pdFVIII + pdVWF [Beriate® (CSL Behring GmBH)]; Advate ± pdVWF; Afstyla ± pdVWF; and Xyntha + pdVWF. RESULTS: We showed that (i) Beriate had a significantly lower immunogenic potential than Advate ± pdVWF, Afstyla - pdVWF, and Mix-rFVIII; (ii) distinct FVIIIs differed significantly in their immunogenic potential in that, in addition to (i), Afstyla + pdVWF had a significantly lower immunogenic potential than Beriate, while the immunogenic potential of Beriate was not significantly different from that of Xyntha + pdVWF; and (iii) rFVIIIs with pdVWF had significantly lower immunogenic potentials than the same rFVIIIs without pdVWF. CONCLUSIONS: Our results provide HLAcII peptidomic level explanations for several important clinical observations/issues including the differential immunogenicity of distinct FVIIIs and the role of HLAcII genetics in inhibitor development.


Assuntos
Fator VIII , Hemofilia A , Células Dendríticas , Antígenos HLA , Hemofilia A/tratamento farmacológico , Humanos , Proteômica
19.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564435

RESUMO

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variação Genética , Hemoglobinas Glicadas/genética , Grupos Populacionais/genética , Medicina de Precisão , Estudos de Coortes , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
20.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227640

RESUMO

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Assuntos
Ceramidas/biossíntese , Ácidos Graxos Dessaturases/genética , Western Blotting , Sistemas CRISPR-Cas/genética , Ceramidas/metabolismo , Feminino , Genótipo , Células Hep G2 , Humanos , Masculino , Americanos Mexicanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...