Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3482, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477689

RESUMO

Large continental faults extend for thousands of kilometres to form boundaries between rigid tectonic blocks. These faults are associated with prominent topographic features and can produce large earthquakes. Here we show the first evidence of a major tectonic structure in its initial-stage, the Al-Idrissi Fault System (AIFS), in the Alboran Sea. Combining bathymetric and seismic reflection data, together with seismological analyses of the 2016 Mw 6.4 earthquake offshore Morocco - the largest event ever recorded in the area - we unveil a 3D geometry for the AIFS. We report evidence of left-lateral strike-slip displacement, characterise the fault segmentation and demonstrate that AIFS is the source of the 2016 events. The occurrence of the Mw 6.4 earthquake together with historical and instrumental events supports that the AIFS is currently growing through propagation and linkage of its segments. Thus, the AIFS provides a unique model of the inception and growth of a young plate boundary fault system.

2.
Bioelectromagnetics ; 31(4): 296-301, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20119972

RESUMO

Pulsed electromagnetic fields (PEMFs) have been used extensively in bone fracture repairs and wound healing. It is accepted that the induced electric field is the dose metric. The mechanisms of interaction between weak magnetic fields and biological systems present more ambiguity than that of PEMFs since weak electric currents induced by PEMFs are believed to mediate the healing process, which are absent in magnetic fields. The present study examines the response of human umbilical vein endothelial cells to weak static magnetic fields. We investigated proliferation, viability, and the expression of functional parameters such as eNOS, NO, and also gene expression of VEGF under the influence of different doses of weak magnetic fields. Applications of weak magnetic fields in tissue engineering are also discussed. Static magnetic fields may open new venues of research in the field of vascular therapies by promoting endothelial cell growth and by enhancing the healing response of the endothelium.


Assuntos
Campos Eletromagnéticos , Células Endoteliais/efeitos da radiação , Endotélio Vascular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Engenharia Tecidual/métodos , Veias Umbilicais/citologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
3.
J Biomed Nanotechnol ; 5(6): 692-706, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20201231

RESUMO

The magnetic labeling of living cells has become of major interest in the areas of cell therapy and tissue engineering. Magnetically labeled cells have been reported to allow increased and controlled seeding, tracking, and targeting of cells. In this work, we comprehensively characterize magnetic nanoparticles (MNPs) possessing a magnetite core of about 11 nm, and which are coated with the fluorinated surfactant F(CF2)nCH2CH2SCH2CH2C(O)OLi and 1,9-nonandithiol (NDT) for the nonspecific labeling of human pulmonary epithelial (H441) cells. We achieved a non-specific cell loading of 38 pg Fe/cell. In this work we combine magnetic cell labeling with subsequent genetic modification of the cells with non-viral transfection complexes associated with PEI-Mag2 magnetic nanoparticles upon gradient magnetic field application called magnetofection. The magnetic responsiveness and magnetic moment of the MNP-labeled cells and the magnetic transfection complexes were evaluated by measuring changes in the turbidity of prepared cells suspensions and complexes in a defined magnetic gradient field. The magnetic responsiveness of cells that were loaded with NDT-Mag1 MNPs (20-38 pg Fe/cell) was sufficient to engraft these labeled cells magnetically onto the luminal surface of a culture tube. This was achieved using a solenoid electromagnet that produced a radial magnetic field of 20-30 mT at the seeding area and an axial gradient field of approx. 4 T/m. The MNP-labeled cells were magnetofected in 2D arrays (well plates) and at the luminal surface of cell culture tube. The optimized magnetic pre-labeling of cells did not interfere with, or even increased, the efficiency of magnetofection in both culture systems without causing cell toxicity. Cell loading of 38 pg Fe/cell of NDT-Mag1 MNPs resulted in high transverse relaxivities r2*, thus allowing the MRI detection of cell concentrations that were equivalent to (or higher than) 1.2 microg Fe/ml. Multi-echo gradient echo imaging and R2* mapping detected as few as 1533 MNP-labeled H441 cells localized within a 50 microl fibrin clot and MNP-labeled cell monolayers that were engrafted on the luminal surface of a cell culture tube. Further loading of cells with MNPs did not increase either the magnetic responsiveness of the cells or the sensitivity of MR imaging. In summary, the NDT-Mag1 magnetic nanoparticles provided a high cell-loading efficiency, resulting in strong cell magnetic moments and a high sensitivity to MRI detection. The transfection ability of the labeled cells was also maintained, thereby increasing the magnetofection efficiency.


Assuntos
Técnicas de Cultura de Células/métodos , DNA/administração & dosagem , DNA/química , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Imageamento por Ressonância Magnética/métodos , Magnetismo , Transfecção/métodos , Linhagem Celular , Células Epiteliais/química , Humanos , Coloração e Rotulagem/métodos
4.
Cells Tissues Organs ; 183(3): 156-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17108686

RESUMO

Optimizing seeding efficiency, reducing delayed culture periods and mimicking native tissue architecture are crucial requirements for the development of seeding procedures in tissue engineering. In vascular applications, the tubular geometry of the grafts further hampers the efficient delivery of cells onto the scaffold. To overcome these limitations, a novel technology based upon the use of magnetic fields is presented in this study: a radial magnetic force drives the cells immediately onto the luminal surface of a tubular scaffold and immobilizes the cells on the substrate's surface promoting cell attachment. Human smooth muscle cells (SMCs) labeled with CD44 magnetic Dynabeads were successively seeded onto the luminal surface of a tubular shaped collagen membrane. After 5 h, one additional layer of human umbilical vein endothelial cells (HUVECs) labeled with CD31 magnetic Dynabeads was seeded onto the luminal SMCs. The co-culture was incubated during 5 days prior to analysis. Cell viability and expression profiles were preserved during the entire seeding process. Histological examination of the constructs highlighted densely packed multilayers of SMCs covered by a monolayer of endothelial cells. SEM inspection confirmed a heterotypic multilayer assembly formed by multiple layers of elongated SMCs covered by a single layer of endothelial cells. Seeding kinetics of HUVECs and SMCs showed over 90% seeding efficiency after 20 and 40 min magnetic exposure respectively. Magnetically induced cell seeding provides a valuable tool for rapid seeding procedures of tubular scaffolds while complying with the histological architecture of tissue.


Assuntos
Vasos Sanguíneos/citologia , Endotélio Vascular/citologia , Magnetismo , Músculo Liso/citologia , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Vasos Sanguíneos/ultraestrutura , Células Cultivadas , Técnicas de Cocultura , Colágeno/química , Colágeno/ultraestrutura , Endotélio Vascular/ultraestrutura , Cavalos , Humanos , Imuno-Histoquímica , Membranas Artificiais , Modelos Biológicos , Músculo Liso/ultraestrutura , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...