Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14793, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926422

RESUMO

During metastatic dissemination, circulating tumour cells (CTCs) enter capillary beds, where they experience mechanical constriction forces. The transient and persistent effects of these forces on CTCs behaviour remain poorly understood. Here, we developed a high-throughput microfluidic platform mimicking human capillaries to investigate the impact of mechanical constriction forces on malignant and normal breast cell lines. We observed that capillary constrictions induced nuclear envelope rupture in both cancer and normal cells, leading to transient changes in nuclear and cytoplasmic area. Constriction forces transiently activated cGAS/STING and pathways involved in inflammation (NF-κB, STAT and IRF3), especially in the non-malignant cell line. Furthermore, the non-malignant cell line experienced transcriptional changes, particularly downregulation of epithelial markers, while the metastatic cell lines showed minimal alterations. These findings suggest that mechanical constriction forces within capillaries may promote differential effects in malignant and normal cell lines.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Capilares/patologia , Núcleo Celular/metabolismo , Metástase Neoplásica , Membrana Nuclear/metabolismo
2.
Tissue Eng Part C Methods ; 30(5): 206-216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568935

RESUMO

Bioprinting within support media has emerged as the superior alternative to conventional extrusion printing. Not only because it allows for more freedom over the shapes that can be printed but also because it allows for the printing of inks that would not retain shape fidelity in freeform deposition such as watery liquids. Apart from functioning as mechanical support during embedded printing, hydrogel microparticle support media can provide the unique advantage of offering distinct chemotactic cues to cells printed in the baths by varying the composition of the hydrogel microparticles. There is great potential in compartmentalized granular baths consisting of different hydrogel particle materials in the field of tissue engineering, as these allow for the local inclusion of properties or cues to guide tissue development. In this work, we present a method to create compartmentalized embedding baths by printing multiple granular hydrogel materials that are widely used in tissue engineering. After adapting the volume fraction (φp) of the particles in the bath, we print within them using both inks composed of hydrogel or of cells and other particles suspended in watery liquid. Our process consists of the following three steps: First, the hydrogel microparticles are packed at a φp that allows them to be extruded while being reversibly jammed, facilitating the localized deposition of the granular media to form a compartmentalized bath. Second, each granular media is deposited in succession to create a packed suspension compartment, and by adding liquid post deposition, φp is reduced to allow for embedded printing. Finally, we demonstrate the printing of multiple inks within the compartmentalized embedding bath and highlight the distinct differences between using inks composed of hydrogels or inks composed of particles suspended in watery liquid. This approach combines the advantages of embedded printing through the use of granular media with the added ability to pattern multiple bioactive granular materials to locally affect the behavior of cells printed within the bath. We expect that this workflow will allow researchers to create spatially compartmentalized, customized bioactive embedding baths that allow for the embedded printing of inks composed of hydrogels, cells, and other particles adapted to their need.


Assuntos
Hidrogéis , Hidrogéis/química , Bioimpressão/métodos , Animais , Engenharia Tecidual/métodos , Camundongos , Impressão Tridimensional , Suspensões
3.
Clin Exp Metastasis ; 38(4): 337-342, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34241735

RESUMO

The behaviour of circulating tumour cells in the microcirculation remains poorly understood. Growing evidence suggests that biomechanical adaptations and interactions with blood components, i.e. immune cells and platelets within capillary beds, may add more complexity to CTCs journey towards metastasis. Revisiting how these mediators impact the ability of circulating tumour cells to survive and metastasise, will be vital to understand the role of microcirculation and advance our knowledge on metastasis.


Assuntos
Microcirculação , Metástase Neoplásica/prevenção & controle , Células Neoplásicas Circulantes/patologia , Fenômenos Biomecânicos , Humanos , Metástase Neoplásica/patologia , Neutrófilos/patologia
4.
Br J Cancer ; 124(1): 58-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257836

RESUMO

During metastasis, tumour cells navigating the vascular circulatory system-circulating tumour cells (CTCs)-encounter capillary beds, where they start the process of extravasation. Biomechanical constriction forces exerted by the microcirculation compromise the survival of tumour cells within capillaries, but a proportion of CTCs manage to successfully extravasate and colonise distant sites. Despite the profound importance of this step in the progression of metastatic cancers, the factors about this deadly minority of cells remain elusive. Growing evidence suggests that mechanical forces exerted by the capillaries might induce adaptive mechanisms in CTCs, enhancing their survival and metastatic potency. Advances in microfluidics have enabled a better understanding of the cell-survival capabilities adopted in capillary-mimicking constrictions. In this review, we will highlight adaptations developed by CTCs to endure mechanical constraints in the microvasculature and outline how these mechanical forces might trigger dynamic changes towards a more invasive phenotype. A better understanding of the dynamic mechanisms adopted by CTCs within the microcirculation that ultimately lead to metastasis could open up novel therapeutic avenues.


Assuntos
Invasividade Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Humanos , Microcirculação/fisiologia , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...