Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236818

RESUMO

Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.


Assuntos
Coinfecção , Viroses , Vírus , Humanos , Coinfecção/genética , Viroma , Estudos Longitudinais , Vírus/genética , Viroses/genética , Viroses/epidemiologia , Bactérias/genética , Perfilação da Expressão Gênica
2.
Cancer Cell ; 41(11): 1963-1971.e3, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37890492

RESUMO

Cancer genomes from patients with African (AFR) ancestry have been poorly studied in clinical research. We leverage two large genomic cohorts to investigate the relationship between genomic alterations and AFR ancestry in six common cancers. Cross-cancer type associations, such as an enrichment of MYC amplification with AFR ancestry in lung, breast, and prostate cancers, and depletion of BRAF alterations are observed in colorectal and pancreatic cancers. There are differences in actionable alterations, such as depletion of KRAS G12C and EGFR L858R, and enrichment of ROS1 fusion with AFR ancestry in lung cancers. Interestingly, in lung cancer, KRAS mutations are less common in both smokers and non-smokers with AFR ancestry, whereas the association of TP53 mutations with AFR ancestry is only seen in smokers, suggesting an ancestry-environment interaction that modifies driver rates. Our study highlights the need to increase representation of patients with AFR ancestry in drug development and biomarker discovery.


Assuntos
Neoplasias Pulmonares , Proteínas Tirosina Quinases , Masculino , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
3.
Genome Med ; 15(1): 8, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759885

RESUMO

BACKGROUND: Efficient presentation of mutant peptide fragments by the human leukocyte antigen class I (HLA-I) genes is necessary for immune-mediated killing of cancer cells. According to recent reports, patient HLA-I genotypes can impact the efficacy of cancer immunotherapy, and the somatic loss of HLA-I heterozygosity has been established as a factor in immune evasion. While global deregulated expression of HLA-I has also been reported in different tumor types, the role of HLA-I allele-specific expression loss - that is, the preferential RNA expression loss of specific HLA-I alleles - has not been fully characterized in cancer. METHODS: Here, we use RNA and whole-exome sequencing data to quantify HLA-I allele-specific expression (ASE) in cancer using our novel method arcasHLA-quant. RESULTS: We show that HLA-I ASE loss in at least one of the three HLA-I genes is a pervasive phenomenon across TCGA tumor types. In pancreatic adenocarcinoma, tumor-specific HLA-I ASE loss is associated with decreased overall survival specifically in the basal-like subtype, a finding that we validated in an independent cohort through laser-capture microdissection. Additionally, we show that HLA-I ASE loss is associated with poor immunotherapy outcomes in metastatic melanoma through retrospective analyses. CONCLUSIONS: Together, our results highlight the prevalence of HLA-I ASE loss and provide initial evidence of its clinical significance in cancer prognosis and immunotherapy treatment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Alelos , Adenocarcinoma/genética , Estudos Retrospectivos , Neoplasias Pancreáticas/genética , Antígenos de Histocompatibilidade Classe I/genética , RNA
4.
Cancer Cell ; 40(10): 1161-1172.e5, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36179682

RESUMO

The immune checkpoint inhibitor (ICI) pembrolizumab is US FDA approved for treatment of solid tumors with high tumor mutational burden (TMB-high; ≥10 variants/Mb). However, the extent to which TMB-high generalizes as an accurate biomarker in diverse patient populations is largely unknown. Using two clinical cohorts, we investigated the interplay between genetic ancestry, TMB, and tumor-only versus tumor-normal paired sequencing in solid tumors. TMB estimates from tumor-only panels substantially overclassified individuals into the clinically important TMB-high group due to germline contamination, and this bias was particularly pronounced in patients with Asian/African ancestry. Among patients with non-small cell lung cancer treated with ICIs, those misclassified as TMB-high from tumor-only panels did not associate with improved outcomes. TMB-high was significantly associated with improved outcomes only in European ancestries and merits validation in non-European ancestry populations. Ancestry-aware tumor-only TMB calibration and ancestry-diverse biomarker studies are critical to ensure that existing disparities are not exacerbated in precision medicine.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/genética , Mutação , Carga Tumoral
5.
Proc Natl Acad Sci U S A ; 117(19): 10305-10312, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332164

RESUMO

The gene encoding the core spliceosomal protein SF3B1 is the most frequently mutated gene encoding a splicing factor in a variety of hematologic malignancies and solid tumors. SF3B1 mutations induce use of cryptic 3' splice sites (3'ss), and these splicing errors contribute to tumorigenesis. However, it is unclear how widespread this type of cryptic 3'ss usage is in cancers and what is the full spectrum of genetic mutations that cause such missplicing. To address this issue, we performed an unbiased pan-cancer analysis to identify genetic alterations that lead to the same aberrant splicing as observed with SF3B1 mutations. This analysis identified multiple mutations in another spliceosomal gene, SUGP1, that correlated with significant usage of cryptic 3'ss known to be utilized in mutant SF3B1 expressing cells. Remarkably, this is consistent with recent biochemical studies that identified a defective interaction between mutant SF3B1 and SUGP1 as the molecular defect responsible for cryptic 3'ss usage. Experimental validation revealed that five different SUGP1 mutations completely or partially recapitulated the 3'ss defects. Our analysis suggests that SUGP1 mutations in cancers can induce missplicing identical or similar to that observed in mutant SF3B1 cancers.


Assuntos
Biologia Computacional/métodos , Mutação , Neoplasias/genética , Fosfoproteínas/genética , Sítios de Splice de RNA , Fatores de Processamento de RNA/genética , Splicing de RNA , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Spliceossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...