Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120505, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442662

RESUMO

Recently, hybrid systems, such as those incorporating high-rate algal ponds (HRAPs) and biofilm reactors (BRs), have shown promise in treating domestic wastewater while cultivating microalgae. In this context, the objective of the present study was to determine an improved scraping frequency to maximize microalgae biomass productivity in a mix of industrial (fruit-based juice production) and domestic wastewater. The mix was set to balance the carbon/nitrogen ratio. The scraping strategy involved maintaining 1 cm wide stripes to retain an inoculum in the reactor. Three scraping frequencies (2, 4, and 6 days) were evaluated. The findings indicate that a scraping frequency of each 2 days provided the highest biomass productivity (18.75 g total volatile solids m-2 d-1). The species' behavior varied with frequency: Chlorella vulgaris was abundant at 6-day intervals, whereas Tetradesmus obliquus favored shorter intervals. Biomass from more frequent scraping demonstrated a higher lipid content (15.45%). Extrapolymeric substance production was also highest at the 2-day frequency. Concerning wastewater treatment, the system removed 93% of dissolved organic carbon and ∼100% of ammoniacal nitrogen. Combining industrial and domestic wastewater sources to balance the carbon/nitrogen ratio enhanced treatment efficiency and biomass yield. This study highlights the potential of adjusting scraping frequencies in hybrid systems for improved wastewater treatment and microalgae production.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Biomassa , Nitrogênio , Carbono
2.
Sci Total Environ ; 920: 170918, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38354809

RESUMO

Microalgae biomass has attracted attention as a feedstock to produce biofuels, biofertilizers, and pigments. However, the high production cost associated with cultivation and separation stages is a challenge for the microalgae biotechnology application on a large scale. A promising approach to overcome the technical-economic limitations of microalgae production is using wastewater as a nutrient and water source for cultivation. This strategy reduces cultivation costs and contributes to valorizing sanitation resources. Therefore, this article presents a comprehensive literature review on the status of microalgae biomass cultivation in wastewater, focusing on production strategies and the accumulation of valuable compounds such as lipids, carbohydrates, proteins, fatty acids, and pigments. This review also covers emerging techniques for harvesting microalgae biomass cultivated in wastewater, discussing the advantages and limitations of the process, as well as pointing out the main research opportunities. The novelty of the study lies in providing a detailed analysis of state-of-the-art and potential advances in the cultivation and harvesting of microalgae, with a special focus on the use of wastewater and implementing innovative strategies to enhance productivity and the accumulation of compounds. In this context, the work aims to guide future research concerning emerging technologies in the field, emphasizing the importance of innovative approaches in cultivating and harvesting microalgae for advancing knowledge and practical applications in this area.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Biotecnologia/métodos , Ácidos Graxos/metabolismo , Nutrientes , Biocombustíveis , Biomassa
3.
Chemosphere ; 305: 135508, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35777544

RESUMO

Microalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH2) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability. For each bioproduct, discussion includes insights on bioprocesses, productivity, commercialization, environmental impacts and major challenges. Opportunities for future research, such as wastewater cultivation, arise as environmentally attractive alternatives for sustainable production with high potential for resource recovery and valorization. Still, microalgae biotechnology stands out as an attractive topic for it research and market potential.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Biotecnologia , Microalgas/metabolismo , Águas Residuárias
4.
Sci Total Environ ; 779: 146205, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744566

RESUMO

With the increasing demand for food, it is increasingly important to maintain soil fertility with the application of fertilizers to supply the nutritional needs of plants. However, the nutrients applied to the soil can suffer significant losses, impacting the environment, and increasing production costs. Using alternative sources, such as microalgae biomass (MB) generated in the treatment of wastewater, in the production of organomineral fertilizers is a way to recover nutrients from the sewage, in addition to contributing to the improvement in soil fertility and favoring crop growth, which can guarantee agricultural sustainability. In the present study, MB was grown in the effluent 00from the food industry and, subsequently, a pelleted organomineral fertilizer (POF) was produced consisting of the combination of MB and synthetic fertilizer (urea), in different proportions. The performance of the proposed fertilizer was analyzed for losses due to ammonia volatilization (N-NH3) over time, for nitrogen assimilation capacity (N) by corn plants (Zea mays L.), and its structure was evaluated by scanning electron microscopy. The study concluded that the highest accumulated volatilization of N-NH3 was in the proportion of 40% of MB and the maximum content of N is reached in the proportion of 24.55% of MB. From the proportion of 25% of MB, there is no increase in N absorbed by plants, at the same time that the volatilization of N-NH3 grows with the increase in MB. The most important factors for obtaining these results were the interaction between MB and urea in the produced organomineral fertilizer tablet, where an increasingly thicker physical barrier was formed with the increase in the proportion of MB; in addition to the POF pH, in which the increase in MB proportions directly favored the pH increase.


Assuntos
Fertilizantes , Microalgas , Agricultura , Amônia/análise , Fertilizantes/análise , Nitrogênio/análise , Solo , Volatilização , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...