Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 173: 351-364, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984630

RESUMO

Developing biocompatible, non-fouling and biodegradable hydrogels for blood-contacting devices remains a demanding challenge. Such materials should promote natural healing, prevent clotting, and undergo controlled degradation. This study evaluates the biocompatibility and biodegradation of degradable poly(2-hydroxyethyl methacrylate) (d-pHEMA) hydrogels with or without reinforcement with oxidized few-layer graphene (d-pHEMA/M5ox) in a long term implantation in rats, assessing non-desired side-effects (irritation, chronic toxicity, immune response). Subcutaneous implantation over 6 months revealed degradation of both hydrogels, despite slower for d-pHEMA/M5ox, with degradation products found in intracellular vesicles. No inflammation nor infection at implantation areas were observed, and no histopathological findings were detected in parenchymal organs. Immunohistochemistry confirmed d-pHEMA and d-pHEMA/M5ox highly anti-adhesiveness. Gene expression of macrophages markers revealed presence of both M1 and M2 macrophages at all timepoints. M1/M2 profile after 6 months reveals an anti-inflammatory environment, suggesting no chronic inflammation, as also demonstrated by cytokines (IL-α, TNF-α and IL-10) analysis. Overall, modification of pHEMA towards a degradable material was successfully achieved without evoking a loss of its inherent properties, specially its anti-adhesiveness and biocompatibility. Therefore, these hydrogels hold potential as blank-slate for further modifications that promote cellular adhesion/proliferation for tissue engineering applications, namely for designing blood contacting devices with different load bearing requirements. STATEMENT OF SIGNIFICANCE: Biocompatibility, tunable biodegradation kinetics, and suitable immune response with lack of chronic toxicity and irritation, are key features in degradable blood contact devices that demand long-term exposure. We herein evaluate the 6-month in vivo performance of a degradable and hemocompatible anti-adhesive hydrogel based in pHEMA, and its mechanically reinforced formulation with few-layer graphene oxide. This subcutaneous implantation in a rat model, shows gradual degradation with progressive changes in material morphology, and no evidence of local inflammation in surrounding tissue, neither signs of inflammation or adverse reactions in systemic organs, suggesting biocompatibility of degradation products. Such hydrogels exhibit great potential as a blank slate for tissue engineering applications, including for blood contact, where cues for specific cells can be incorporated.


Assuntos
Grafite , Ratos , Animais , Grafite/farmacologia , Poli-Hidroxietil Metacrilato/química , Hidrogéis/farmacologia , Hidrogéis/química , Engenharia Tecidual , Inflamação , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
2.
ACS Biomater Sci Eng ; 9(6): 3712-3722, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37256830

RESUMO

Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 µA, and 0.68 W/m2 for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 µA, and 1.28 W/m2 due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 µA, and 0.17 W/m2 less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 µF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.


Assuntos
Eletrônica Médica , Hidrogéis , Elétrons , Poli-Hidroxietil Metacrilato
3.
Acta Biomater ; 164: 253-268, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121371

RESUMO

Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.% of oxidized graphene-based materials (GBMs) with different lateral sizes/thicknesses (single-layer graphene oxide and oxidized forms of few-layer graphene materials) was performed to enhance the mechanical properties of hydrogels. An ultimate tensile strength increasing up to 0.2 MPa (293% higher than degradable pHEMA) was obtained using oxidized few-layer graphene with 5 µm lateral size. Moreover, the incorporation of GBMs has demonstrated to simultaneously tune the degradation time, which ranged from 2 to 4 months. Notably, these features were achieved keeping not only the intrinsic properties of inert pHEMA regarding water uptake, wettability and cytocompatibility (short and long term), but also the non-fouling behavior towards human cells, platelets and bacteria. This new pHEMA hydrogel with degradation and biomechanical performance tuned by GBMs, can therefore be envisioned for different applications in tissue engineering, particularly for BCDs where non-fouling character is essential. STATEMENT OF SIGNIFICANCE: Suitable mechanical properties, low molecular weight of the degradation products and hemocompatibility are key features in degradable blood contacting devices (BCDs), and pave the way for significant improvement in the field. In here, a hydrogel with outstanding anti-adhesiveness (pHEMA) provides hemocompatibility, the presence of a degradable crosslinker provides degradability, and incorporation of graphene oxide reestablishes its strength, allowing tuning of both degradation and mechanical properties. Notably, these hydrogels simultaneously provide suitable water uptake, wettability, cytocompatibility (short and long term), no acute inflammatory response, and non-fouling behavior towards endothelial cells, platelets and bacteria. Such results highlight the potential of these hydrogels to be envisioned for applications in tissue engineered BCDs, namely as small diameter vascular grafts.


Assuntos
Grafite , Hidrogéis , Humanos , Hidrogéis/farmacologia , Poli-Hidroxietil Metacrilato , Grafite/farmacologia , Células Endoteliais , Materiais Biocompatíveis/farmacologia , Água
4.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216431

RESUMO

Blood-contacting devices are increasingly important for the management of cardiovascular diseases. Poly(ethylene glycol) (PEG) hydrogels represent one of the most explored hydrogels to date. However, they are mechanically weak, which prevents their use in load-bearing biomedical applications (e.g., vascular grafts, cardiac valves). Graphene and its derivatives, which have outstanding mechanical properties, a very high specific surface area, and good compatibility with many polymer matrices, are promising candidates to solve this challenge. In this work, we propose the use of graphene-based materials as nanofillers for mechanical reinforcement of PEG hydrogels, and we obtain composites that are stiffer and stronger than, and as anti-adhesive as, neat PEG hydrogels. Results show that single-layer and few-layer graphene oxide can strengthen PEG hydrogels, increasing their stiffness up to 6-fold and their strength 14-fold upon incorporation of 4% w/v (40 mg/mL) graphene oxide. The composites are cytocompatible and remain anti-adhesive towards endothelial cells, human platelets and Staphylococcus aureus, similar to neat hydrogels. To the best of our knowledge, this is the first work to report such an increase of the tensile properties of PEG hydrogels using graphene-based materials as fillers. This work paves the way for the exploitation of PEG hydrogels as a backbone material for load-bearing applications.


Assuntos
Grafite/química , Hidrogéis/química , Polietilenoglicóis/química , Adesivos/química , Materiais Biocompatíveis/química , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Polímeros/química , Engenharia Tecidual/métodos
5.
ACS Appl Mater Interfaces ; 13(28): 32662-32672, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34240610

RESUMO

The lack of small-diameter vascular grafts (inner diameter <5 mm) to substitute autologous grafts in arterial bypass surgeries has a massive impact on the prognosis and progression of cardiovascular diseases, the leading cause of death globally. Decellularized arteries from different sources have been proposed as an alternative, but their poor mechanical performance and high collagen exposure, which promotes platelet and bacteria adhesion, limit their successful application. In this study, these limitations were surpassed for decellularized umbilical cord arteries through the coating of their lumen with graphene oxide (GO). Placental and umbilical cord arteries were decellularized and perfused with a suspension of GO (C/O ratio 2:1) with ∼1.5 µm lateral size. A homogeneous GO coating that completely covered the collagen fibers was obtained for both arteries, with improvement of mechanical properties being achieved for umbilical cord decellularized arteries. GO coating increased the maximum force in 27%, the burst pressure in 29%, the strain in 25%, and the compliance in 10%, compared to umbilical cord decellularized arteries. The achieved theoretical burst pressure (1960 mmHg) and compliance (13.9%/100 mmHg) are similar to the human saphenous vein and mammary artery, respectively, which are used nowadays as the gold standard in coronary and peripheral artery bypass surgeries. Furthermore, and very importantly, coatings with GO did not compromise the endothelial cell adhesion but decreased platelet and bacteria adhesion to decellularized arteries, which will impact on the prevention of thrombosis and infection, until full re-endothetialization is achieved. Overall, our results reveal that GO coating has an effective role in the improvement of decellularized umbilical cord artery performance, which is a huge step toward their application as a small-diameter vascular graft.


Assuntos
Prótese Vascular , Materiais Revestidos Biocompatíveis/química , Grafite/química , Artérias Umbilicais/química , Aderência Bacteriana/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Córion/irrigação sanguínea , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Placenta/irrigação sanguínea , Gravidez
6.
Biomater Sci ; 9(9): 3362-3377, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949373

RESUMO

Thrombosis and infection are the leading causes of blood-contacting device (BCD) failure, mainly due to the poor performance of existing biomaterials. Poly(2-hydroxyethyl methacrylate) (pHEMA) has excellent hemocompatibility but the weak mechanical properties impair its use as a bulk material for BCD. As such, pHEMA has been explored as a coating, despite the instability and difficulty of attachment to the underlying polymer compromise its success. This work describes the hydrogel composites made of pHEMA and graphene-based materials (GBM) that meet the biological and mechanical requirements for a stand-alone BCD. Five GBM differing in thickness, oxidation degree, and lateral size were incorporated in pHEMA, revealing that only oxidized-GBM can reinforce pHEMA. pHEMA/oxidized-GBM composites are cytocompatible and prevent the adhesion of endothelial cells, blood platelets, and bacteria (S. aureus), thus maintaining pHEMA's anti-adhesive properties. As a proof of concept, the thrombogenicity of the tubular prototypes of the best formulation (pHEMA/Graphene oxide (GO)) was evaluated in vivo, using a porcine arteriovenous-shunt model. pHEMA/GO conduits withstand the blood pressure and exhibit negligible adhesion of blood components, revealing better hemocompatibility than ePTFE, a commercial material for vascular access. Our findings reveal pHEMA/GO, a synthetic and off-the-shelf hydrogel, as a preeminent material for the design of blood-contacting devices that prevent thrombosis and bacterial adhesion.


Assuntos
Grafite , Poli-Hidroxietil Metacrilato , Animais , Materiais Biocompatíveis/farmacologia , Células Endoteliais , Staphylococcus aureus , Suínos
7.
ACS Appl Mater Interfaces ; 12(18): 21020-21035, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32233456

RESUMO

Graphene-based materials (GBMs) have been increasingly explored for biomedical applications. However, interaction between GBMs-integrating surfaces and bacteria, mammalian cells, and blood components, that is, the major biological systems in our body, is still poorly understood. In this study, we systematically explore the features of GBMs that most strongly impact the interactions of GBMs films with plasma proteins and biological systems. Films produced by vacuum filtration of GBMs with different oxidation degree and thickness depict different surface features: graphene oxide (GO) and few-layer GO (FLGO) films are more oxidized, smoother, and hydrophilic, while reduced GO (rGO) and few-layer graphene (FLG) are less or nonoxidized, rougher, and more hydrophobic. All films promote glutathione oxidation, although in a lower extent by rGO, indicating their potential to induce oxidative stress in biological systems. Human plasma proteins, which mediate most of the biological interactions, adsorb less to oxidized films than to rGO and FLG. Similarly, clinically relevant bacteria, Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, adhere less to GO and FLGO films, while rGO and FLG favor bacterial adhesion and viability. Surface features caused by the oxidation degree and thickness of the GBMs powders within the films have less influence toward human foreskin fibroblasts; all materials allow cell adhesion, proliferation and viability up to 14 days, despite less on rGO surfaces. Blood cells adhere to all films, with higher numbers in less or nonoxidized surfaces, despite none having caused hemolysis (<5%). Unlike thickness, oxidation degree of GBMs platelets strongly impact surface morphology/topography/chemistry of the films, consequently affecting protein adsorption and thus bacteria, fibroblasts and blood cells response. Overall, this study provides useful guidelines regarding the choice of the GBMs to use in the development of surfaces for an envisioned application. Oxidized materials appear as the most promising for biomedical applications that require low bacterial adhesion without being cytotoxic to mammalian cells.


Assuntos
Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/química , Plaquetas/efeitos dos fármacos , Proteínas Sanguíneas/efeitos dos fármacos , Grafite/química , Adsorção , Proteínas Sanguíneas/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proteínas Filagrinas , Humanos , Oxirredução , Propriedades de Superfície
8.
Mater Sci Eng C Mater Biol Appl ; 109: 110537, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228892

RESUMO

Implantable medical devices infection and consequent failure is a severe health issue, which can result from bacterial adhesion, growth, and subsequent biofilm formation at the implantation site. Graphene-based materials, namely graphene oxide (GO), have been described as potential antibacterial agents when immobilized and exposed in polymeric matrices. This work focuses on the development of antibacterial and biocompatible 3D fibrous scaffolds incorporating GO. Poly(ε-caprolactone) scaffolds were produced, with and without GO, using wet-spinning combined with additive manufacturing. Scaffolds with different GO loadings were evaluated regarding physical-chemical characterization, namely GO surface exposure, antibacterial properties, and ability to promote human cells adhesion. Antimicrobial properties were evaluated through live/dead assays performed with Gram-positive and Gram-negative bacteria. 2 h and 24 h adhesion assays revealed a time-dependent bactericidal effect in the presence of GO, with death rates of adherent S. epidermidis and E. coli reaching ~80% after 24 h of contact with scaffolds with the highest GO concentration. Human fibroblasts cultured for up to 14 days were able to adhere and spread over the fibers, independently of the presence of GO. Overall, this work demonstrates the potential of GO-containing fibrous scaffolds to be used as biomaterials that hinder bacterial infection, while allowing human cells adhesion.


Assuntos
Anti-Infecciosos , Escherichia coli/crescimento & desenvolvimento , Grafite , Poliésteres , Impressão Tridimensional , Staphylococcus epidermidis/crescimento & desenvolvimento , Alicerces Teciduais/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Grafite/química , Grafite/farmacologia , Humanos , Poliésteres/química , Poliésteres/farmacologia
10.
Sci Total Environ ; 699: 134410, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31678876

RESUMO

In Europe, monitoring contaminant concentrations and their effects in the marine environment is required under the Marine Strategy Framework Directive (MSFD, 2008/56/EC). The striped dolphin (Stenella coeruleoalba) is the most abundant small cetacean species in Portuguese oceanic waters, representing a potential biomonitoring tool of contaminant levels in offshore waters. Concentrations of nine trace elements were evaluated by ICP-MS in kidney, liver and muscle samples of 31 striped dolphins stranded in the Portuguese continental coast. The mean renal Cd concentration was high (19.3 µg.g-1 wet weight, range 0.1-69.3 µg.g-1 wet weight) comparing to striped dolphins from other locations. Therefore, the present study reports a possibly concerning level of Cd in the oceanic food chain in Portuguese offshore areas. This study also aimed at evaluating potential relationships between trace element concentrations and striped dolphins' biological and health-related variables. Individual length was related with some of the trace element concentrations detected in striped dolphins. Indeed, Cd, Hg and Se bioaccumulated in larger animals, whereas the reverse was observed for Mn and Zn. Striped dolphins with high parasite burdens showed higher levels of Hg, while animals showing gross pathologies presented higher concentrations of Cd and Se. This study reported relationships between trace element concentrations and health-related variables for the first time in striped dolphins and it also provided information on the relative contamination status of Portuguese oceanic waters in comparison to other regions in the world.


Assuntos
Monitoramento Biológico/métodos , Stenella/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais
11.
Biochim Biophys Acta Bioenerg ; 1859(8): 591-601, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29719209

RESUMO

Sit4p is a type 2A-related protein phosphatase in Saccharomyces cerevisiae involved in a wide spectrum of cellular functions, including the glucose repression of mitochondrial transcription. Here we report that Sit4p is also involved in post-translational regulation of mitochondrial proteins and identified 9 potential targets. One of these, the ATP synthase (FoF1 complex) beta subunit Atp2p, was characterized and two phosphorylation sites, T124 and T317, were identified. Expression of Atp2p-T124 or T317 phosphoresistant versions in sit4Δ cells decreased Atp2p phosphorylation confirming these as Sit4p-regulated sites. Moreover, Sit4p and Atp2p interacted both physically and genetically. Mimicking phosphorylation at T124 or T317 increased Atp2p levels, resulting in higher abundance/activity of ATP synthase. Similar changes were observed in sit4Δ cells in which Atp2p is endogenously more phosphorylated. Expression of Atp2-T124 or T317 phosphomimetics also increased mitochondrial respiration and ATP levels and extended yeast lifespan. These results suggest that Sit4p-mediated dephosphorylation of Atp2p-T124/T317 downregulates Atp2p alongside with ATP synthase and mitochondrial function. Combination of transcriptional with post-translational regulation during fermentative growth may allow for a more efficient Sit4p repression of mitochondrial respiration.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteína Fosfatase 2/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Fúngica da Expressão Gênica , Fosforilação , Saccharomyces cerevisiae/crescimento & desenvolvimento
12.
Chemosphere ; 179: 120-126, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28364647

RESUMO

Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 µg g-1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 µg g-1) and liver (5.03 µg g-1). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 µg g-1) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast.


Assuntos
Monitoramento Ambiental/métodos , Oligoelementos/farmacocinética , Tartarugas , Poluentes Químicos da Água/farmacocinética , Animais , Cádmio/metabolismo , Cádmio/farmacocinética , Dieta , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Portugal , Espanha , Distribuição Tecidual , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo
13.
Mar Pollut Bull ; 113(1-2): 400-407, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769556

RESUMO

The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72µg·g-1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26µg·g-1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess.


Assuntos
Cádmio/análise , Golfinhos Comuns/metabolismo , Monitoramento Ambiental/métodos , Mercúrio/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Cádmio/metabolismo , Ecossistema , Feminino , Rim/química , Fígado/química , Masculino , Mercúrio/metabolismo , Portugal , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Cell Signal ; 27(9): 1840-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26079297

RESUMO

Mitochondria function as the powerhouses of the cell for energy conversion through the oxidative phosphorylation process. Accumulation of dysfunctional mitochondria promotes a bioenergetic crisis and cell death by apoptosis. Yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit mitochondrial dysfunction and shortened lifespan associated with the accumulation of specific ceramide species and activation of the PP2A-like protein phosphatase Sit4p and of the Hog1p kinase. Here, we show that isc1Δ cells display hyperactivation of mitophagy that is suppressed by downregulating Sit4p, Hog1p or the TORC1-Sch9p pathway. Notably, isc1Δ cells also have high levels of Dnm1p associated with unbalanced mitochondrial fission, leading to mitochondrial fragmentation, and DNM1 deletion suppressed the oxidative stress sensitivity and shortened lifespan of isc1Δ cells. Moreover, Isc1p and Dnm1p physically interact, suggesting a possible regulatory role for Isc1p in mitochondrial dynamics. Overall, our work demonstrates that Isc1p-mediated ceramide signalling regulates mitophagy and mitochondrial dynamics in yeast with impact on mitochondrial function and lifespan. Since ceramides have been implicated in ageing and diseases associated with mitochondrial dysfunction, our findings suggest that therapeutic strategies targeting ceramide signalling may improve mitochondrial function and human healthspan.


Assuntos
Ceramidas/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitofagia/fisiologia , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/deficiência , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fosfolipases Tipo C/metabolismo
15.
Carbohydr Polym ; 112: 48-55, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25129715

RESUMO

Aiming to investigate the possible occurrence of transglycosylation reactions between galactomannans and side chains of arabinogalactans during coffee roasting, mixtures of ß-(1 → 4)-D-mannotriose and α-(1 → 5)-L-arabinotriose were subjected to dry thermal treatments at 200 °C. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis allowed identifying polysaccharides composed by pentose and hexose residues with a degree of polymerization up to 18 residues. Methylation analysis showed the occurrence of new types of glycosidic linkages in all thermally treated mixtures, as well as the occurrence of terminally and 5-linked ribose, possibly formed from arabinose isomerization. Also, xylose and lyxose were identified and proposed to be formed from mannose. These results support the occurrence of transglycosylation reactions promoted by roasting involving both oligosaccharides in the starting mixtures, resulting in arabinan and mannan chimeric polysaccharides. These structural features were also found in roasted coffee polysaccharide samples.


Assuntos
Café/química , Galactanos/química , Mananas/química , Trissacarídeos/química , Configuração de Carboidratos , Manipulação de Alimentos/métodos , Galactose/análogos & derivados , Glicosilação , Temperatura Alta , Hidrólise , Oligossacarídeos/química , Oxirredução , Pentoses/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...