Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neurovirol ; 26(1): 122-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31428990

RESUMO

The Chikungunya virus (CHIKV) is an arbovirus transmitted to humans through mosquito bites and can cause a series of symptoms ranging from a benign febrile illness to severe neurological conditions. We report the identification of CHIKV in a serum sample from an elderly woman with febrile illness and severe arthralgia in Brazil. The occurrence was found of peripheral polyneuropathy affecting the upper and lower limbs evidenced by electroneuromyographic findings. The patient was treated with a corticoid associated with methotrexate, suggesting that the pathophysiological basis of the case in question may be related to an immune-mediated response by T cells and inflammatory cytokines. This finding reinforces the need to be aware of the emergence of neuroinfections related to CHIKV and effective diagnoses for the early detection of neurological alterations, favoring the clinical management of these patients.


Assuntos
Febre de Chikungunya/complicações , Polineuropatias/virologia , Idoso , Brasil , Feminino , Humanos , Imunossupressores/uso terapêutico , Metotrexato/uso terapêutico , Polineuropatias/tratamento farmacológico
2.
Arch Virol ; 162(10): 2971-2981, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28620810

RESUMO

Usurpation of the host's signalling pathways is a common strategy employed by viruses to promote their successful replication. Here we show that infection with the orthopoxvirus vaccinia virus (VACV) leads to sustained stimulation of c-Jun activity during the entire infective cycle. This stimulation is temporally regulated through MEK/ERK or MKK/JNK pathways, i.e. during the early/mid phase (1 to 6 hpi) and in the late phase (9 to 24 hpi) of the infective cycle, respectively. As a transcriptional regulator, upon infection with VACV, c-Jun is translocated from the cytoplasm to the nucleus, where it binds to the AP-1 DNA sequence found at the promoter region of its target genes. To investigate the role played by c-Jun during VACV replication cycle, we generated cell lines that stably express a c-Jun-dominant negative (DNc-Jun) mutation. Our data revealed that c-Jun is required during early infection to assist with viral DNA replication, as demonstrated by the decreased amount of viral DNA found in the DNc-Jun cells. We also demonstrated that c-Jun regulates the expression of the early growth response gene (egr-1), a gene previously shown to affect VACV replication mediated by MEK/ERK signalling. VACV-induced stimulation of the MKK/JNK/JUN pathway impacts viral dissemination, as we observed a significant reduction in both viral yield, during late stages of infection, and virus plaque size. Collectively, our data suggest that, by modulating the host's signalling pathways through a common target such as c-Jun, VACV temporally regulates its infective cycle in order to successfully replicate and subsequently spread.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Vaccinia virus/fisiologia , Animais , Linhagem Celular , DNA Viral , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibroblastos/virologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinases/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosforilação , Proteínas Proto-Oncogênicas c-jun/genética , Replicação Viral
3.
J Exp Zool A Ecol Genet Physiol ; 325(8): 511-523, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27581888

RESUMO

Parotoid glands of amphibians are known for the production of several biologically active compounds having pharmacological and toxic effects in mammals. In the present work, a protein fraction obtained from Rhinella schneideri parotoid gland (RsPP) was characterized to study its biological and toxic effects. Rhinella schneideri parotoid secretion is composed of up to 30% (w/w) of soluble proteins. Tandem mass spectrometric analysis of the RsPP identified 104 proteins, including actin, beta-actin, ribosomal proteins, catalase, galectin, and uncharacterized proteins; however, no peptidases were found, and this result was reinforced by the absence of proteolytic activity. In addition, RsPP did not exhibit pro-coagulant or antibacterial effects. However, pretreatment of mice with different doses of RsPP intraperitoneally inhibited carrageenan-induced paw edema and increased tissue myeloperoxidase activity. RsPP also reduced interleukin 1ß levels in the peritoneal cavities and cell migration in the peritoneal cavities of an animal model of carrageenan-induced peritonitis. Subchronic treatment of animals with RsPP for 7 consecutive days did not alter the serum biochemical, renal, or liver parameters. However, a significant reduction in blood leukocyte count was observed. Our results showed that R. schneideri parotoid secretion contains proteins with anti-inflammatory and slight toxic effects.


Assuntos
Proteínas de Anfíbios/farmacologia , Venenos de Anfíbios/farmacologia , Anti-Inflamatórios/farmacologia , Edema/tratamento farmacológico , Peritonite/tratamento farmacológico , Proteínas de Anfíbios/análise , Proteínas de Anfíbios/toxicidade , Venenos de Anfíbios/química , Venenos de Anfíbios/toxicidade , Animais , Bufonidae/metabolismo , Edema/metabolismo , Extremidades , Feminino , Contagem de Leucócitos , Masculino , Camundongos , Peroxidase/efeitos dos fármacos , Espectrometria de Massas em Tandem
4.
Rev. bras. farmacogn ; 25(3): 269-277, May-June 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-757438

RESUMO

AbstractSome publications have described the pharmacological properties of latices proteins. Thus, in the present study proteins from Plumeria pudica Jacq., Apocynaceae, latex were evaluated for anti-inflammatory and antinociceptive activities. Obtained data showed that an intraperitoneal administration of different doses of latex was able to reduce the paw edema induced by carrageenan in a dose-dependent manner (better dose 40 mg/kg; 72.7% inhibition at 3rd and 78.7% at 4th hour) and the edema induced by dextran (40 mg/kg; 51.5% inhibition at 30 min and 93.0% at 1st hour). Inhibition of edema induced by carrageenan was accompanied by a reduction of myeloperoxidase activity. Pre-treating animals with latex (40 mg/kg) also inhibited the paw edema induced by histamine, serotonin, bradykinin, prostaglandin E2, compound 48/80. Additionally, the latex (40 mg/kg) reduced the leukocyte peritoneal migration induced by carrageenan and this event was followed by reduction of IL-1β and TNF-α in peritoneal fluid. The latex-treatment (40 mg/kg) reduced the animal abdominal constrictions induced by acetic acid and the first phase on paw licking model induced by formalin. When latex was treated with heat (at 100 °C for 30 min), anti-edematogenic and myeloperoxidase activities were significantly reduced, indicating the involvement of heat-sensitive proteins on anti-inflammatory effect. Our results evidence that latex fluids are a source of proteins with pharmacological properties.

5.
Antiviral Res ; 93(1): 69-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22068148

RESUMO

The pharmacological inhibitor SP600125 [anthra(1,9-cd)pyrazol-6(2H)-one 1,9-pyrazoloanthrone] has been largely employed as a c-JUN N-terminal kinase (JNK1/2) inhibitor. In this study, we evaluated whether pretreatment with SP600125 was able to prevent Orthopoxviruses Vaccinia virus (VACV), Cowpox virus (CPXV) and modified Vaccinia virus Ankara (MVA) replication. We found that incubation with SP600125 not only blocked virus-stimulated JNK phosphorylation, but also, significantly reduced virus production. We observed 1-3 log decline in viral yield depending on the cell line infected (A31, BSC-40 or BHK-21). The reduction in viral yield correlated with a dramatic impact on virus morphogenesis progress, intracellular mature viruses (IMV) were barely detected. Despite the fact that SP600125 can act as an efficient anti-orthopoxviral compound, we also provide evidence that this antiviral effect is not specifically exerted through JNK1/2 inhibition. This conclusion is supported by the fact that viral titers measured after infections of JNK1/2 knockout cells were not altered as compared to those of wild-type cells. In contrast, a decline in viral titers was verified when the infection of KO cells was carried out in the presence of the pharmacological inhibitor. SP600125 has been the focus of recent studies that have evaluated its action on diverse viral infections including DNA viruses. Our data support the notion that SP600125 can be regarded as a potential antipoxviral compound.


Assuntos
Antracenos/farmacologia , Antivirais/farmacologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Orthopoxvirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Orthopoxvirus/ultraestrutura , Fosforilação , Infecções por Poxviridae/metabolismo , Células Vero
6.
J Virol ; 86(1): 172-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031940

RESUMO

Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)-c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection.


Assuntos
Citoesqueleto/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Vaccinia virus/fisiologia , Vacínia/enzimologia , Animais , Movimento Celular , Citoesqueleto/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 7/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Fosforilação , Vacínia/genética , Vacínia/fisiopatologia , Vacínia/virologia , Vaccinia virus/genética
7.
Mem Inst Oswaldo Cruz ; 105(3): 269-77, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20512239

RESUMO

In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Vaccinia virus/fisiologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Viral da Expressão Gênica/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Replicação Viral/genética
8.
Biochem J ; 381(Pt 2): 437-46, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15025565

RESUMO

Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353-38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/fisiologia , Vaccinia virus/enzimologia , Replicação Viral/fisiologia , Células 3T3/enzimologia , Células 3T3/virologia , Actinas/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Replicação do DNA/genética , DNA Viral/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Viral da Expressão Gênica/genética , Genes Precoces/genética , Proteínas Imediatamente Precoces/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peptídeos/fisiologia , Fosforilação , Biossíntese de Proteínas/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Células Vero/virologia , Proteínas Elk-1 do Domínio ets
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...