Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mob Genet Elements ; 7(3): 1-9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580196

RESUMO

The somatic mobilization of transposable elements is more common than previously thought. In this review we discuss how the intensity and the biologic consequences of somatic mobilization are dependent on the transposable elements landscapes of each genome, and on the "momentum" of each particular TE with respect to the mechanisms that control its transposition and the possibility to escape this control. Additionally, the biologic consequences of somatic mobilization vary among organisms that show an early separation between the germline and somatic cells and those organisms that do not exhibit this separation or that reproduce asexually. In the former, somatic transposition can be involved in phenotypic plasticity, detrimental conditions such as disease, or processes such as aging. For the organisms without separation between the germ and soma, somatic mobilization can be a source of genetic variability.

2.
Cell Stress Chaperones ; 20(5): 843-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092118

RESUMO

There are many complex interactions between transposable elements (TEs) and host genomes. Environmental changes that induce stressful conditions help to contribute for increasing complexity of these interactions. The transposon mariner-Mos1 increases its mobilization under mild heat stress. It has putative heat shock elements (HSEs), which are probably activated by heat shock factors (HSFs). Ultraviolet radiation (UVC) is a stressor that has been suggested as able to activate heat shock protein genes (Hsp). In this study, we test the hypothesis that if UVC induces Hsp expression, as heat does, it could also promote mariner-Mos1 transposition and mobilization. The Drosophila simulans white-peach is a mutant lineage that indicates the mariner-Mos1 transposition phenotypically through the formation of mosaic eyes. This lineage was exposed to UVC or mild heat stress (28 °C) in order to evaluate the induction of mariner-Mos1 expression by RT-qPCR, as well as the mariner-Mos1 mobilization activity based on the count number of red spots in the eyes. The effects of both treatments on the developmental time of flies and cell cycle progression were also investigated. Both the analysis of eyes and mariner-Mos1 gene expression indicate that UVC radiation has no effect in mariner-Mos1 transposition, although heat increases the expression and mobilization of this TE soon after the treatment. However, the expression of Hsp70 gene increased after 24 h of UVC exposure, suggesting different pathway of activation. These results showed that heat promotes mariner-Mos1 mobilization, although UVC does not induce the expression or mobilization of this TE.


Assuntos
Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a DNA/efeitos da radiação , Drosophila simulans/genética , Temperatura Alta , Fatores de Transcrição/fisiologia , Transposases/genética , Transposases/efeitos da radiação , Raios Ultravioleta , Animais , Fatores de Transcrição de Choque Térmico , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...