Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172848, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703843

RESUMO

Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.

2.
Micromachines (Basel) ; 15(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542620

RESUMO

Quantum dots (QDs) have captured the attention of the scientific community due to their unique optical and electronic properties, leading to extensive research for different applications. They have also been employed as sensors for ionic species owing to their sensing properties. Detecting anionic species in an aqueous medium is a challenge because the polar nature of water weakens the interactions between sensors and ions. The anions bicarbonate (HCO3-), carbonate (CO32-), sulfate (SO42-), and bisulfate (HSO4-) play a crucial role in various physiological, environmental, and industrial processes, influencing the regulation of biological fluids, ocean acidification, and corrosion processes. Therefore, it is necessary to develop approaches capable of detecting these anions with high sensitivity. This study utilized CdTe QDs stabilized with cysteamine (CdTe-CYA) as a fluorescent sensor for these anions. The QDs exhibited favorable optical properties and high photostability. The results revealed a gradual increase in the QDs' emission intensity with successive anion additions, indicating the sensitivity of CdTe-CYA to the anions. The sensor also exhibited selectivity toward the target ions, with good limits of detection (LODs) and quantification (LOQs). Thus, CdTe-CYA QDs show potential as fluorescent sensors for monitoring the target anions in water sources.

3.
J Fluoresc ; 34(2): 667-673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37341927

RESUMO

Defects in ZnSe quantum dots are responsible for increasing the trap states, which can lead to the drastic reduction of their fluorescence output, being one of the major drawbacks of these materials. As surface atoms become more relevant in these nanoscale structures, energy traps due to surface vacancies, play a very definite role in the final emission quantum yield. In the present study, we report the use of photoactivation procedures to decrease surface defects of ZnSe QDs stabilized with mercaptosuccinic acid (MSA), in order to improve the radiative pathways. We applied the colloidal precipitation procedure in a hydrophilic medium and evaluated the role of Zn/Se molar ratios as well as the Zn2+ precursors (nitrate and chloride salts) on their optical properties. Best results (i.e. increment of 400% of the final fluorescence intensity) were obtained for nitrate precursor and a Zn/Se = 1.2 ratio. Thus, we suggest that the chloride ions may compete more efficiently than nitrate ions with MSA molecules decreasing the passivation capability of this molecule. The improvement in ZnSe QDs fluorescence can potentialize their use for biomedical applications.

4.
Colloids Surf B Biointerfaces ; 221: 112984, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36371925

RESUMO

We report the development of a new nanostructured electrochemical immunosensing platform for the detection of the Zika virus envelope protein (EP-ZIKV). For this, quantum dots (QDs) were explored in combination with screen-printed carbon electrodes (SPCEs) functionalized with a conductor polymeric film, formed from 2-(1H-pyrrol-1-yl)ethanamine (Pyam), and anti-EP DIII ZIKV antibodies. Carboxylated CdTe QDs were synthesized, characterized by optical and structural techniques, and covalently immobilized onto the SPCE/PPyam surface. Then, anti-EP ZIKV antibodies were also covalently conjugated to QDs. All stages of platform assembly were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The detection of EP-ZIKV was performed by differential pulse voltammetry (DPV). Results indicated that QDs were efficiently immobilized, and did not show oxidation, under the conditions evaluated, for at least 7 months. Anti-EP ZIKV antibodies were effectively immobilized on the PPyam/QDs surface, even after 2 months of electrode storage. The platform enabled the detection of EP-ZIKV with high sensitivity using minimal sample volumes (LOD = 0.1 ng mL-1 and LOQ = 0.4 ng mL-1). The platform was also able to detect EP-ZIKV in spiked serum samples. Moreover, the platform showed specificity, not detecting the EP-DENV 3 nor a mixture of four DENV serotypes antigens. Thus, the proposed combination favored the development of a sensitive immunosensing platform, promising for the detection of Zika in the viremic phase, which also holds potential for transposition to other arboviruses.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Infecção por Zika virus , Zika virus , Humanos , Pontos Quânticos/química , Zika virus/metabolismo , Infecção por Zika virus/diagnóstico , Compostos de Cádmio/química , Telúrio/química , Técnicas Biossensoriais/métodos , Biomarcadores/metabolismo
5.
Top Curr Chem (Cham) ; 379(2): 12, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33550491

RESUMO

The development of multimodal nanoprobes has been growing in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Gadolínio/química , Imageamento por Ressonância Magnética , Imagem Óptica , Pontos Quânticos/química , Animais , Humanos , Estrutura Molecular
6.
Colloids Surf B Biointerfaces ; 193: 111142, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526653

RESUMO

Sialic acids (SAs) modulate essential physiological and pathological conditions, including cell-cell communication, immune response, neurological disorders, and cancer. Besides, SAs confer negative charges to cell membranes, also contributing to hemorheology. Phenylboronic acids, called as mimetic lectins, have been highlighted to study SA profiles. The association of these interesting molecules with the optical properties of quantum dots (QDs) can provide a deeper/complementary understanding of mechanisms involving SAs. Herein, we explored the thiol affinity to the QD surface to develop a simple, fast and direct attachment procedure to functionalize these nanocrystals with 3-mercaptophenylboronic acids (MPBAs). The functionalization was confirmed by fluorescence correlation spectroscopy and inductively coupled plasma spectrometry. The conjugate specificity/efficiency was proved in experiments using red blood cells (RBCs). A labeling >90% was found for RBCs incubated with conjugates, which reduced to 17% after neuraminidase pretreatment. Moreover, QDs-MPBA conjugates were applied in a comparative study using acute (KG-1) and chronic (K562) myelogenous leukemia cell lines. Results indicated that KG-1 membranes have a greater level of SA, with 100% of cells labeled and a median of fluorescence intensity of ca. 2.5-fold higher when compared to K562 (94%). Therefore, this novel QDs-MPBA conjugate can be considered a promising nanoplatform to evaluate SA contents in a variety of biological systems.


Assuntos
Compostos de Cádmio/química , Membrana Celular/química , Pontos Quânticos/química , Ácidos Siálicos/química , Telúrio/química , Compostos de Cádmio/síntese química , Linhagem Celular Tumoral , Humanos , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
7.
J Photochem Photobiol B ; 194: 135-139, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30954872

RESUMO

Zika virus (ZIKV) has been declared a public health emergency of international concern. ZIKV has been associated with some neurological disorders, and their long-term effects are not completely understood. The majority of the methods for ZIKV diagnosis are based on the detection of IgM antibodies, which are the first signs of immunological response. However, the detection of IgG antibodies can be an important approach for ZIKV past infection diagnosis, especially for pregnant women, helping the comprehension/treatment of this disease. There has been a growing interest in applying nanoparticles for efficient ZIKV or antibodies detection. Quantum dots (QD) are unique fluorescent semiconductor nanoparticles, highly versatile for biological applications. In the present study, we explored the special QD optical properties to develop an immunofluorescence assay for anti-ZIKV IgG antibodies detection. Anti-IgG antibodies were successfully conjugated with QDs and applied in a fluorescence sensing nanoplatform. After optimization using IgG antibodies, the conjugates were employed to detect anti-ZIKV IgG antibodies in polystyrene microplates sensitized with ZIKV envelope E protein. The nanoplatform was able to detect anti-ZIKV IgG antibodies in a concentration at least 100-fold lower than the amount expected for protein E immune response. Moreover, conjugates were able to detect the antibodies for at least 4 months. Thus, our results showed that this QDs-based fluoroimmunoplatform can be considered practical, simple and promising to detect Zika past infections and/or monitoring immune response in vaccine trials.


Assuntos
Anticorpos Anti-Idiotípicos/análise , Anticorpos Anti-Idiotípicos/química , Fluorimunoensaio/métodos , Pontos Quânticos/química , Zika virus/imunologia , Anticorpos Anti-Idiotípicos/imunologia , Compostos de Cádmio/química , Telúrio/química , Zika virus/isolamento & purificação
8.
Sci Rep ; 9(1): 2341, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787475

RESUMO

Magnetic resonance imaging (MRI) is a powerful non-invasive diagnostic tool that enables distinguishing healthy from pathological tissues, with high anatomical detail. Nevertheless, MRI is quite limited in the investigation of molecular/cellular biochemical events, which can be reached by fluorescence-based techniques. Thus, we developed bimodal nanosystems consisting in hydrophilic quantum dots (QDs) directly conjugated to Gd(III)-DO3A monoamide chelates, a Gd(III)-DOTA derivative, allowing for the combination of the advantages of both MRI and fluorescence-based tools. These nanoparticulate systems can also improve MRI contrast, by increasing the local concentration of paramagnetic chelates. Transmetallation assays, optical characterization, and relaxometric analyses, showed that the developed bimodal nanoprobes have great chemical stability, bright fluorescence, and high relaxivities. Moreover, fluorescence correlation spectroscopy (FCS) analysis allowed us to distinguish nanosystems containing different amounts of chelates/QD. Also, inductively coupled plasma optical emission spectrometry (ICP - OES) indicated a conjugation yield higher than 75%. Our nanosystems showed effective longitudinal relaxivities per QD and per paramagnetic ion, at least 5 times [per Gd(III)] and 100 times (per QD) higher than the r1 for Gd(III)-DOTA chelates, suitable for T1-weighted imaging. Additionally, the bimodal nanoparticles presented negligible cytotoxicity, and efficiently labeled HeLa cells as shown by fluorescence. Thus, the developed nanosystems show potential as strategic probes for fluorescence analyses and MRI, being useful for investigating a variety of biological processes.

9.
Biochim Biophys Acta Gen Subj ; 1862(12): 2788-2796, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251667

RESUMO

BACKGROUND: Site-specific multimodal nanoplatforms with fluorescent-magnetic properties have great potential for biological sciences. For this reason, we developed a multimodal nanoprobe (BNPs-Tf), by covalently conjugating an optical-magnetically active bimodal nanosystem, based on quantum dots and iron oxide nanoparticles, with the human holo-transferrin (Tf). METHODS: The Tf bioconjugation efficiency was evaluated by the fluorescence microplate assay (FMA) and the amount of Tf immobilized on BNPs was quantified by fluorescence spectroscopy. Moreover, relaxometric and fluorescent properties of the BNPs-Tf were evaluated, as well as its ability to label specifically HeLa cells. Cytotoxicity was also performed by Alamar Blue assay. RESULTS: The FMA confirmed an efficient bioconjugation and the fluorescence spectroscopy analysis indicated that 98% of Tf was immobilized on BNPs. BNPs-Tf also presented a bright fluorescence and a transversal/longitudinal relaxivities ratio (r2/r1) of 65. Importantly, the developed BNPs-Tf were able to label, efficiently and specifically, the Tf receptors in HeLa cells, as shown by fluorescence and magnetic resonance imaging assays. Moreover, this multimodal system did not cause noteworthy cytotoxicity. CONCLUSIONS: The prepared BNPs-Tf hold great promise as an effective and specific multimodal, highly fluorescent-magnetic, nanoplatform for fluorescence analyses and T2-weighted images. GENERAL SIGNIFICANCE: This study developed an attractive and versatile multimodal nanoplatform that has potential to be applied in a variety of in vitro and in vivo studies, addressing biological processes, diagnostic, and therapeutics. Moreover, this work opens new possibilities for designing other efficient multimodal nanosystems, considering other biomolecules in their composition able to provide them important functional properties.


Assuntos
Corantes Fluorescentes/química , Magnetismo , Nanopartículas/química , Receptores da Transferrina/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Pontos Quânticos , Espectrometria de Fluorescência , Transferrina/química
10.
Nanotechnology ; 28(28): 285704, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28643695

RESUMO

This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

11.
Biochim Biophys Acta ; 1860(1 Pt A): 28-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26434535

RESUMO

BACKGROUND: Overexpression of transferrin receptors (TfRs), which are responsible for the intracellular uptake of ferric transferrin (Tf), has been described in various cancers. Although molecular biology methods allow the identification of different types of receptors in cancer cells, they do not provide features about TfRs internalization, quantification and distribution on cell surface. This information can, however, be accessed by fluorescence techniques. In this work, the quantum dots (QDs)' unique properties were explored to strengthen our understanding of TfRs in cancer cells. METHODS: QDs were conjugated to Tf by covalent coupling and QDs-(Tf) bioconjugates were applied to quantify and evaluate the distribution of TfRs in two human glioblastoma cells lines, U87 and DBTRG-05MG, and also in HeLa cells by using flow cytometry and confocal microscopy. RESULTS: HeLa and DBTRG-05MG cells showed practically the same TfR labeling profile by QDs-(Tf), while U87 cells were less labeled by bioconjugates. Furthermore, inhibition studies demonstrated that QDs-(Tf) were able to label cells with high specificity. CONCLUSIONS: HeLa and DBTRG-05MG cells presented a similar and a higher amount of TfR than U87 cells. Moreover, DBTRG-05MG cells are more efficient in recycling the TfR than the other two cells types. GENERAL SIGNIFICANCE: This is the first study about TfRs in human glioblastoma cells using QDs. This new fluorescent tool can contribute to our understanding of the cancer cell biology and can help in the development of new therapies targeting these receptors.


Assuntos
Neoplasias Encefálicas/química , Glioblastoma/química , Pontos Quânticos , Receptores da Transferrina/análise , Corantes Fluorescentes , Células HeLa , Humanos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...